1 7 points	×
Select all seven strong acids below:	
HF	
HCI	
HI	
HBr	
\square H ₂ SO ₄	
HAt	
HCIO ₄	
HNO ₃	
NaOH	
HCIO	
HCIO ₃	

2 5 points

What is the pH of a 0.044 M HI solution? Note: Report your answer to two sig figs (pH = X.XX)

Type your answer...

3 5 points

What is the [OH] when 0.0023 moles of $Ca(OH)_2$ are placed in 654 mL water? Assume complete dissociation of $Ca(OH)_2$.

- O 0.0035 M
- O .0070 M
- O 2.15 M
- O 3.5 x 10^{−6} M
- O 12.0 M
- 4 5

5 points

Use the data <u>here</u> to rank the following weak acids from weakest to strongest.

HIO CH₃COOH HCN HF HNO₂

- \bigcirc HIO < HCN < CH₃COOH < HNO₂ < HF
- \bigcirc HCN< HIO < CH₃COOH < HNO₂ < HF
- \bigcirc HNO₂ < HF < HIO < HCN < CH₃COOH
- $\bigcirc HF < HNO_2 < CH_3COOH < HCN < HIO$

_			
5	5	poi	nts

A 0.5 M sample of a weak acid, HA₁ , has a pH = 4.24. A 0.5 M sample of another weak acid, HA₂, has a pH = 5.66. Which weak acid has the larger K_a value?

- O HA₂
- O HA₁
- \bigcirc Both will have the same value of K_a

6 5 points

The generic weak acid HA has a percent ionization equal to 10.8% at a 0.025 M concentration. What is the pH?

Note: Report your answer to two sig figs (pH = X.XX)

Type your answer...

7 3 points

Which of the following represents a generic neutralization reaction of a strong acid and strong base?

- $\bigcirc \quad \text{Acid} + \text{Base} \rightarrow \text{Salt} + \text{Water}$
- \bigcirc Acid + Base \rightarrow Weak Base + Water
- \bigcirc Acid + Base \rightarrow Weak Acid + Water
- $\bigcirc \quad \text{Acid} + \text{Base} \rightarrow \text{Acid} + \text{Water}$
- $\bigcirc \quad Acid + Water \rightarrow Base + Salt$
- \bigcirc Base + Water \rightarrow Acid + Salt

8 5 points

х¢

Ŕ

Å

Ŕ

×

×

Å

Consider the classic strong acid/base neutralization reaction of hydrochloric acid (HCl) and sodium hydroxide (NaOH) from HW01.

 $HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(\ell)$

How many mL of 0.0448 M NaOH are needed to neutralize 32.0 mL of 0.0291 M HCl ?

- 🔿 20.8 mL
- O 24.8 mL
- O 33.7 mL
- O 27.1 mL
- 🔵 49.3 mL

9

5 points

A titration experiment is set up to fully neutralize a strong acid (HCl) using a strong base (NaOH). The HCl has a concentration of 0.01 M and a volume of 100 mL. The NaOH also has a concentration of 0.01 M. What volume of NaOH is needed to fully neutralize the HCl?

- **O** 50 mL
- O 200 mL
- O 100 mL
- O 250 mL
- O 20 mL
- 500 mL

х¢

Å

10 5 points

Barium hydroxide is a strong base that dissociates based on the following reaction: Ba(OH)₂(aq) \rightarrow Ba²⁺(aq) + 2OH⁻(aq)

What volume of 0.005 M HCl (strong acid) is needed to fully neutralize a 500 mL 0.005 M Ba(OH) $_2$ solution?

Ο	1.00 L

- O 500 mL
- O 1.00 mL
- O 750 mL
- O 250 mL
- O 2.50 L

11 5 points

What is the pH at the equivalence point of a titration involving a strong acid titrant and strong base analyte?

Ο	pH = 7
Ο	pH < 7
Ο	pH > 7

12 5 points

What is the pH at the equivalence point of a titration involving a strong acid titrant and a weak base analyte?

Ο	pH = 7
Ο	pH < 7
\bigcirc	рН > 7

13 5 points

What is the pH at the equivalence point of a titration involving a strong base titrant and a weak acid analyte?

Ο	pH > 7
Ο	pH = 7
Ο	pH < 7

14 5 points

Neutralizing an olympic size swimming pool is conceptually very similar to performaing a massive titration experiment. Suppose a 700 thousand gallon swimming pool has a pH = 9.33 which is a bit too high for swimming. Calculate how many gallons of 10 M HCl (strong acid) it will take to neutralize the swimming pool to pH = 7. Report your answer to exactly 2 significant figures.

Type your answer...

15 5 points

What atmospheric component is responsible for the natural acidity of rain?

- O Carbon dioxide
- Sulfuric acid
- 🔵 Ozone
-) Oxygen

×

×₽

, sp

16	5 points	5 ⁵
	Which two methods can be used to make sea water drinkable?	
	distillation	
	osmosis	
	reverse osmosis	
	flocculation	
17	5 points	5 ⁽²⁾
1/	5 points	\sim
	The pH of rain water falling through an unpolluted atmosphere is closest to	
	O 4.8	
	O 5.4	
	O 7.0	

18	5 points
----	----------

8.7

Most aquatic life in lakes cannot survive in water with a pH less than...

Ο	5
0	7
0	8
0	14

19 5 points

The acid neutralizing capacity of a lake or stream most often derives from the presence of _____ in the surrounding soil or rock.

0	CaCO ₃
0	HNO ₃
0	NaOH
0	H ₃ O ⁺

20 5 points

Ŕ

Ň

Ŕ

When Lake Travis is full, it holds about 369 billion gallons. If we pretend that Lake Travis has a neutral pH (pH = 7), approximately how many moles of H^+ are present in the lake? 1 gal = 3.785 L

- O 1.40 x 10^5 moles
- O 3.69×10^4 moles
- O 3.69 x 10⁹ moles
- O 1.39 x 10^8 moles
- O 138 moles
- O 4.65 x 10^8 moles
- O 1.00 x 10^{-7} moles