7 points Select all seven strong acids below: HF HCI HI HBr H2SO4	29	 5 points
HAt HCIO ₄ HNO ₃ NaOH HCIO		6 5 points ☆ The generic weak acid HA has a percent ionization equal to 10.8% at a 0.025 M concentration. What is the pH? Note: Report your answer to two sig figs (pH = X.XX) Type your answer
 HCIO₃ 2 5 points What is the pH of a 0.044 M HI solution? Note: Report your answer to two sig figs (pH = X.XX) Type your answer 3 5 points 	\$	7 3 points Image: Constraint of the following represents a generic neutralization reaction of a strong acid and strong base? O Acid + Base → Salt + Water O Acid + Base → Weak Base + Water O Acid + Base → Weak Acid + Water O Acid + Base → Acid + Water O Acid + Water → Base + Salt
 What is the [OH] when 0.0023 moles of Ca(OH)₂ are placed in 654 mL water? A complete dissociation of Ca(OH)₂. 0.0035 M 0.0070 M 2.15 M 3.5 x 10⁻⁶ M 12.0 M 	lssume	 Base + Water → Acid + Salt 5 points Consider the classic strong acid/base neutralization reaction of hydrochloric acid (HCl) and sodium hydroxide (NaOH) from HW01. HCl(aq) + NaOH(aq) → NaCl(aq) + H₂O(ℓ) How many mL of 0.0448 M NaOH are needed to neutralize 32.0 mL of 0.0291 M HCl ? 36.3 mL
4 5 points Use the data <u>here</u> to rank the following weak acids from weakest to strongest . HIO CH ₃ CCOOH HCN HF	\$	 20.8 mL 24.8 mL 33.7 mL 27.1 mL 49.3 mL
HNO_2 $HIO < HCN < CH_3COOH < HNO_2 < HF$ $HCN < HIO < CH_3COOH < HNO_2 < HF$ $HNO_2 < HF < HIO < HCN < CH_3COOH$ $HF < HNO_2 < CH_3COOH < HCN < HIO$		 9 5 points ★ A titration experiment is set up to fully neutralize a strong acid (HCl) using a strong base (NaOH). The HCl has a concentration of 0.01 M and a volume of 100 mL. The NaOH also has a concentration of 0.01 M. What volume of NaOH is needed to fully neutralize the HCl? 50 mL 200 mL 250 mL 20 mL 500 mL

10	5 points	≫ 10	5 5	points	Ń
	Barium hydroxide is a strong base that dissociates based on the following reaction:			ich two methods can be used to make sea water drinkable?	
	$Ba(OH)_2(aq) \rightarrow Ba^{2+}(aq) + 2OH^{-}(aq)$	005 14		distillation	
	What volume of 0.005 M HCl (strong acid) is needed to fully neutralize a 500 mL 0. $Ba(OH)_2$ solution?	.005 M		osmosis	
	O 1.00 L		\square	reverse osmosis	
	0 500 mL			flocculation	
	0 1.00 mL		0		
	O 750 mL				~
	O 250 mL	17		points e pH of rain water falling through an unpolluted atmosphere is closest to	\$
	Q 2.50 L		0	4.8	
	0 2.50 L		0	5.4	
			_	7.0	
11	5 points	×*	0		
	What is the pH at the equivalence point of a titration involving a strong acid titrant strong base analyte?	and	0	8.7	
	O pH = 7				
	O pH < 7	18	3 5		Ŕ
	O pH > 7		-	st aquatic life in lakes cannot survive in water with a pH less than	
			0	5	
		\$	0	7	
12	5 points		0	8	
	What is the pH at the equivalence point of a titration involving a strong acid titrant weak base analyte?	anu a	0	14	
	O pH = 7				
	O pH < 7	19	9 5	points	Ŕ
	O pH > 7			e acid neutralizing capacity of a lake or stream most often derives from the prese	nce
			0	CaCO ₃	
13	5 points	x8°	0	HNO3	
	What is the pH at the equivalence point of a titration involving a strong base titran	t and a	0	NaOH	
	weak acid analyte? O pH > 7		0		
			0	H_3O^+	
	O pH = 7				
	O pH < 7	20	5	nointe	\$

14 5 points

×

Å

Neutralizing an olympic size swimming pool is conceptually very similar to performaing a rectaining an organic size symming poor is conceptually very similar to perform any massive titration experiment. Suppose a 700 thousand gallon swimming pool has an H = 9.33 which is a bit too high for swimming. Calculate how many gallons of 10 M HCl (strong acid) it will take to neutralize the swimming pool to pH = 7. Report your answer to exactly 2 significant figures.

Type your answer...

points What atmospheric component is responsible for the natural acidity of rain?

- Ο Carbon dioxide Sulfuric acid Ο Ο Ozone
- Oxygen Ο

20 5 points Ŕ When Lake Travis is full, it holds about 369 billion gallons. If we pretend that Lake Travis has a neutral pH (pH = 7), approximately how many moles of $\rm H^+$ are present in the lake? 1 gal = 3.785 L

Å

×

Ń

Å

0	1.40 x 10 ⁵ moles	
\sim	1.40 × 10 III0IC3	

Ο 3.69 x 10⁴ moles

- Ο 3.69 x 10⁹ moles
- Ο 1.39 x 10⁸ moles
- Ο 138 moles
- Ο 4.65 x 10⁸ moles
- Ο 1.00 x 10⁻⁷ moles