HWM1 - Water Acids & Bases I

		HVVOI - vvaler, Acids & Bases i									
	-										
		oints The following accurately explains a reason why water is so important for									
	biology and chemistry? The polar hydrogen bonds of water cause it to be a liquid capable of dissolving many other polar solutes at room temperature										
	0	The polar hydrogen bonds of water cause it to be a stable solid at room temperature									
	0	Water is a very large organic molecule capable of dissolving many other organic molecules									
	0	Water is a nonpolar molecule with a low molecular weight, causing it to be easily vaporized at room temperature									
,	5 pc	pints									
		th of the following explains why water is a liquid at room temperature?									
	0	Water contains hydrogen bonds									
	0	Water has a relatively small molecular weight									
	0	Water is nonpolar									
	0	Water is a large organic molecule									
2	5 nc	pints									
		th of the following best classifies pure water and pure sodium chloride (NaCl)?									
	0	Pure Water: nonpolar covalent molecule NaCl: ionic compound									
	0	Pure Water: ionic compound NaCl: ionic compound									
	0	Pure Water: polar covalent molecule NaCl: ionic compound									
	0	Pure Water: nonpolar covalent molecule NaCl: polar covalent molecule									
		oints th of the following images represents a hydrated anion?									
	\bigcirc	and the following images represents a flyurated amon.									
	•	•									
	0	A A A									
	5.00	pints									
		th ions are produced by a base in an aqueous solution?									
	0	Cl ⁻									
	0	OH-									

O Na⁺ O so₄26 5 points

A solution	is known	to have a	я рН	that i	s equal	to	8.32.	Which	statement	best	describe
thic colutio	m?										

- O the solution is very acidic
- 0 the solution is slightly basic
- 0 the solution is slightly acidic
- O the solution is very basic
- 7 5 points

Which of the following concentrations represents a basic solution at room temperature?

- O $[OH^{-}] = 1.8 \times 10^{-4} M$
- O $[OH^{-}] = 1.8 \times 10^{-9} M$
- O $[OH^{-}] = 1.8 \times 10^{-11} M$
- O $[OH^{-}] = 1 \times 10^{-7} M$
- 8 5 points

Rank the following solutions in order of increasing acidity:

Solution A: pH = 1.54 Solution B: pH = 7.00

Solution C: pH = 9.42

Solution D: pH = 5.31

- Solution D < Solution A < Solution B < Solution C
- O Solution B < Solution A < Solution D < Solution C
- O Solution C < Solution B < Solution D < Solution A
- O Solution A < Solution B < Solution C < Solution D
- O Solution A < Solution D < Solution B < Solution C

What is $[H_3O^+]$ when $[OH^-] = 3.3 \times 10^9 M$?

- O $3.3 \times 10^{-5} M$
- O $1.0 \times 10^{-7} M$
- O 3.3 x 10⁻⁹ M
- O $3.0 \times 10^{-6} M$
- 10 5 points

Every increase of one pH unit means...

- O there are 10 fewer H⁺ ions in solution
- there are 10 times fewer H⁺ ions in solution
- \circ the acidity is slightly increased
- ${\sf O}$ there are 10 times more ${\sf H}^+$ ions in solution

11 5 points	17 5 points
The pH of lemon juice is approximately 2.40. At this pH, the hydronium (H_3O^+) ion concentration is closest to which concentration?	Which of the following equations depicts a weak acid reaction?
O 5.6 x10 ⁻⁴ M	$O CaCO_3(s) \to Ca^{2+}(aq) + CO_3^{2-}(aq)$
O 2.5 x 10 ⁻¹² M	$O HCl(aq) \ + H_2O(\ell) \rightarrow H_3O^+(aq) + Cl^-(aq)$
O 0.38 M	O $HNO_2(aq) + H_2O(\ell) \rightarrow NO_2^{-}(aq) + H_3O^{+}(aq)$
O 4.0 x 10 ⁻³ M	$\bigcirc \qquad HCI(aq) + NaOH(aq) \to NaCI(aq) + H_2O(\ell)$
12 5 points	18 5 points
What is the pH of 0.023 M HCI? Note: 2 sig-figs in a logarithmic scale would be X.XX.	Which of the following equations depicts a salt dissolving into water?
Type your answer	$\bigcirc CaCO_3(s) \to CaCO_3(\ell)$
	$O CaCO_3(s) \to Ca^{2+}(aq) + CO_3^{2-}(aq)$
3 5 points	
What is the pH of a 0.0156 M NaOH solution? Note: Report 3 digits after the decimal.	O $HCI(aq) + H_2O(\ell) \rightarrow H_3O^+(aq) + CI^-(aq)$
Type your answer	19 5 points
4 5 points	0.15 moles of strong acid are added to 0.15 moles weak base in aqueous solution. How would you describe the resulting solution?
The hydronium ion (H_3O^+) concentration in a solution with pH 10 is than the	A weakly acidic salt
hydronium ion concentration in a solution with pH 13.	A strongly basic solution
O 1000 times more	A weakly basic salt
O 1000 times less	A strongly acidic solution
O 300 times less	
O 30 times more	20 5 points
O 3 times more	Consider the classic strong acid/base neutralization reaction of hydrochloric acid (HCI) and sodium hydroxide (NaOH). HCI(aq) + NaOH(aq) \rightarrow NaCI(aq) + $\not\vdash$ NO(ℓ)
L5 5 points	How many mL of 0.0362 M NaOH are needed to neutralize 30.0 mL of 0.0438 M HCI
A 4.80 g sample of sodium hydroxide is dissolve into water to make a 1.5 gallon solution.	O 33.7 mL
What is the pH of this solution?	O 27.1 mL
O 11.84	O 41.8 mL
O 12.32	O 24.8 mL
O 1.68	O 36.3 mL
O 14.51	O 30.0 mL
O 12.50	
16 5 points	
Consider the following acid/base equation: $C_6H_5NH_2(aq) + H_2O(\ell) \rightarrow C_6H_5NH_3^+(aq) + OH^-(aq)$	
In this equation, water is behaving as a	
O weak base	

neutral saltweak acidneutral conjugate