HW01 - Water, Acids \& Bases

5 points

Which of the following accurately explains a reason why water is so important for biology and chemistry?
The polar hydrogen bonds of water cause it to be a liquid capable of dissolving many other polar solutes at room temperature
The polar hydrogen bonds of water cause it to be a stable solid at room temperature
Water is a very large organic molecule capable of dissolving many other organic molecules
Water is a nonpolar molecule with a low molecular weight, causing it to be easily vaporized at room temperature

25 points
Which of the following explains why water is a liquid at room temperature?
O Water contains hydrogen bonds
Water has a relatively small molecular weight
W Water is nonpolar
Water is a large organic molecule

35 points
Which of the following best classifies pure water and pure sodium chloride (NaCl)?
Pure Water: nonpolar covalent molecule NaCl : ionic compound
Pure Water: ionic compound NaCl : ionic compound
Pure Water: polar covalent molecule NaCl : ionic compound
Pure Water: nonpolar covalent molecule NaCl : polar covalent molecule

45 points
Which of the following images represents a hydrated anion?
O

O

5 points
Which ions are produced by a base in an aqueous solution?
O Cl^{-}
$\bigcirc \mathrm{OH}^{-}$
○ Na^{+}
O $\mathrm{SO}_{4}{ }^{2-}$

65 points
A solution is known to have a pH that is equal to 8.32. Which statement best describes this solution?
O the solution is very acidic
〇 the solution is slightly basic
〇 the solution is slightly acidic
O the solution is very basic

75 points
Which of the following concentrations represents a basic solution at room temperature?
O $\left[\mathrm{OH}^{-}\right]=1.8 \times 10^{-4} \mathrm{M}$
O $\left[\mathrm{OH}^{-}\right]=1.8 \times 10^{-9} \mathrm{M}$
O $\left[\mathrm{OH}^{-}\right]=1.8 \times 10^{-11} \mathrm{M}$
O $\left[\mathrm{OH}^{-}\right]=1 \times 10^{-7} \mathrm{M}$

8 5 points
Rank the following solutions in order of increasing acidity:
Solution A: $\mathrm{pH}=1.54$
Solution B: $\mathrm{pH}=7.00$
Solution C: $\mathrm{pH}=9.42$
Solution D: $\mathrm{pH}=5.31$
O Solution D < Solution A < Solution B < Solution C
Solution B < Solution A < Solution D < Solution C
O Solution C < Solution B < Solution D < Solution A
O Solution A < Solution B < Solution C < Solution D
O Solution A < Solution D < Solution B < Solution C

95 points
What is $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$when $\left[\mathrm{OH}^{-}\right]=3.3 \times 10^{9} \mathrm{M}$?
O $3.3 \times 10^{-5} \mathrm{M}$
O $1.0 \times 10^{-7} \mathrm{M}$
O $3.3 \times 10^{-9} \mathrm{M}$
O $3.0 \times 10^{-6} \mathrm{M}$

105 points
Every increase of one pH unit means...
O there are 10 fewer H^{+}ions in solution
O there are 10 times fewer H^{+}ions in solution
\bigcirc the acidity is slightly increased
O there are 10 times more H^{+}ions in solution

115 points
The pH of lemon juice is approximately 2.40 ．At this pH ，the hydronium $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$ion concentration is closest to which concentration？
○ $5.6 \times 10^{-4} \mathrm{M}$
O $2.5 \times 10^{-12} \mathrm{M}$
0.38 M

O $4.0 \times 10^{-3} \mathrm{M}$

125 points
What is the pH of 0.023 M HCl ？Note： 2 sig－figs in a logarithmic scale would be X．XX．
Type your answer．．．

135 points
What is the pH of a 0.0156 M NaOH solution？
Note：Report 3 digits after the decimal．
Type your answer．．

145 points

The hydronium ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$concentration in a solution with pH 10 is \qquad than the hydronium ion concentration in a solution with pH 13.
O 1000 times more
○ 1000 times less
O 300 times less
O 30 times more
O 3 times more

155 points
A 4.80 g sample of sodium hydroxide is dissolve into water to make a 1.5 gallon solution． What is the pH of this solution？
○ 11.84
○ 12.32
○ 1.68
○ 14.51
○ 12.50

165 points
Consider the following acid／base equation：
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
In this equation，water is behaving as a．．．
O weak base
〇 neutral salt
O weak acid
〇 neutral conjugate

175 points
Which of the following equations depicts a weak acid reaction？
$\bigcirc \mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})$
○ $\mathrm{HCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
$\bigcirc \mathrm{HNO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \mathrm{NO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
○ $\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)$

185 points
Which of the following equations depicts a salt dissolving into water？
$\bigcirc \mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{l})$
$\bigcirc \mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})$
$\bigcirc \mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)$
$\mathrm{HCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$

195 points

0.15 moles of strong acid are added to 0.15 moles weak base in aqueous solution．How would you describe the resulting solution？
O A weakly acidic salt
O A strongly basic solution
O A weakly basic salt
A strongly acidic solution

205 points
Consider the classic strong acid／base neutralization reaction of hydrochloric acid（HCI） and sodium hydroxide（ NaOH ）．

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{b}_{2} \mathrm{O}(\ell)
$$

How many mL of 0.0362 M NaOH are needed to neutralize 30.0 mL of 0.0438 M HCl ？
○ 33.7 mL
○ 27.1 mL
○ 41.8 mL
○ 24.8 mL
O 36.3 mL
〇 30.0 mL

