
 $4.184 / \mathrm{g} \cdot \mathrm{g}$

$0-4.40 \times 10^{8} \mathrm{k} / \mathrm{mol}$
O $-5.25 \mathrm{~s} 10^{3} \mathrm{k} \mathrm{J} / \mathrm{mol}$
O $-6.33 \times 10^{4} \mathrm{H} / \mathrm{mol}$

Calculate the change in enthalpy of the following reaction in kJ/mol using bond energy
data: $\mathrm{ClF}+\mathrm{CO} \longrightarrow \mathrm{COClF}$
Type your answer..
Bis

$\begin{aligned} & \text { provided, calculate } \Delta \mathrm{H} \text { for thef f } \\ & \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Cl}(\mathrm{~g}) \end{aligned}$	
Bond	nerg
H-H	436
Cl-C]	242
H-Cl	432

O
${ }^{246} \mathrm{~kJ} / \mathrm{mol}$
$-186 \mathrm{k} / \mathrm{mol}$
$\begin{array}{ll}\text { O } & -186 \mathrm{k} / \mathrm{mol} \\ \text { O } & 186 \mathrm{k} / \mathrm{mol}\end{array}$
O $-246 \mathrm{~kJ} / \mathrm{mol}$
$4{ }^{6}$ poins
Stimate the change in enthalpy of the following reaction using bond energy data:
O $850 \mathrm{~kJ} / \mathrm{mol}$
O $-1469 \mathrm{~kJ} / \mathrm{mol}$
$-183 \mathrm{~kJ} / \mathrm{mol}$
$1241 \mathrm{~kJ} / \mathrm{mol}$

Whairs the value of heat flow for the combustion of hydrogen in $\mathrm{kJ} / \mathrm{g} ? \Delta \mathrm{H}^{\prime}$ for this
processs is $-286 \mathrm{k} /$ /nol.

○ $-572 \mathrm{k} / \mathrm{g}$
O $-286 \mathrm{k} / \mathrm{g}$
$0^{-71.5 \mathrm{~kJ} / \mathrm{g}}$
$-$
Which of the following is the most effcicient fuel based on its combustion enthalpy per
${ }^{\mathrm{O}} \mathrm{O}$. ${ }^{\text {hydrogen }}$
O wood
O octane
O methane
O coal

What is the more effficint method to break a high molar mass fraction from a crude o il $\bigcirc \bigcirc$
O fractional di
O reforming
O catalytic cracking

B

an be made into a more efficient fuel by adding branching through the
O thermal cracking
O fractional distillation
O cataytic reforming
O catalytic cracking

If y y w want to calculate the heat flow involving a temperature change, which equation
will you use? will you use?
$)^{a=m C_{s}}$
-
O $\sum n$ bonds breaking - $\sum n$ bonds forming
O $a=2\left(m-c_{s} \Delta T\right.$
O $q=m \Delta H$
10 ${ }^{6 \mathrm{p}} \mathrm{p}$
O $a=2\left(m-c_{s} \Delta T\right)$
O $q=m c_{\Delta} \Delta T$
O $\sum n$ bonds breaking $-\sum n$ bonds forming
O $q=m \Delta H_{\text {trats }}$
O $a=m c$
14
Designate the sign of the heat fow ((+ or-) for each of the following physica
changes: Vaporization:
type your answer... Fusion: type your answer... Freezing
type your answer... Sublimation: type your answer.

(art 10 of 4 Draw the heating curve for the process of heating 14.0 g pure ice from -18.0
 Type your answer.
 he nearest whole number.

Type your answer...
(Part 4 of 4) What is the total heat applied during this process? Answer in kilojoules (!) to Type your answer...

	125 J
O	

O 229 J
O 6735 J
O 6610 J

