You might need to grab some data from here for the bond energy problems.

1 8 points A 1.00 g sample of n-hexane (C ₆ H ₁₄) undergoes complete combustion with excess O ₂ in a bomb calorimeter. The temperature of the 1815 g of water surrounding the bomb rises from 26.15°C to 29.97°C. The heat capacity of the hardware component of the calorimeter (everything that is not water) is 5068 J/°C. What is the hange in energyfor the combustion of n-C ₆ H ₁₄ ? One mole of n-C ₆ H ₁₄ is 86.1 g. The specific heat of water is 4.184 J/g°C. O -4.16 x 10 ³ kJ/mol O -5.25 x 10 ³ kJ/mol	 6 points Which of the following is the most efficient fuel based on its combustion enthalpy per gram? hydrogen wood octane methane coal
O -6.33 x 10 ⁴ kJ/mol	7 6 points
2 A points	What is the more efficient method to break a high molar mass fraction from a crude oil
Calculate the change in enthalpy of the following reaction in kJ/mol using bond energy	fractional distillation
data:	O reforming
	O catalytic cracking
Type your answer	O thermal cracking
Bond Bond Energy (kJ/mol) H-H 436 CI-CI 242 H-CI 432 O 246 kJ/mol	 thermal cracking fractional distillation catalytic reforming catalytic cracking
O 186 kJ/mol	9 6 points
O -246 kJ/mol	If you want to calculate the heat flow involving a temperature change, which equation will you use?
	$O \qquad q = mC_{\rm s}\Delta T$
4 6 points	$\bigcirc q = mC$
Estimate the change in enthalpy of the following reaction using bond energy data: NoH $(\alpha) \rightarrow H_{0}(\alpha) \rightarrow 2NH_{0}(\alpha)$	$ O \Sigma n \text{ bonds breaking -} \Sigma n \text{ bonds forming} $
$\bigcap_{1} 850 \mathbf{k} / mol$	$\bigcirc \qquad q = 2(m - C_{\rm s} \Delta T)$
	$\bigcirc q = m \Delta H$
O -183 kl/mol	
O 1241 kJ/mol	10 6 points If you want to calculate the heat flow involving a phase change, which equation will you use?
5 6 points	$O = 2(m - C_{\varsigma} \Delta T)$
What is the value of heat flow for the combustion of hydrogen in kJ/g? ΔH^* for this	$\bigcap q = mC_c \Delta T$

process is -286 kJ/mol.

- O 572 kJ/g O -572 kJ/g
- O -286 kJ/g
- O -71.5 kJ/g
- O -143 kJ/g

- $\bigcirc \quad \Sigma n \text{ bonds breaking -}\Sigma n \text{ bonds forming} \\$
- $\bigcirc q = m \Delta H_{trans}$
- $\bigcirc q = mC$

11 8 points

Designate the sign of the heat flow (+ or -) for each of the following physical changes: Vaporization:

type your answer	Fusion: t	ype your answer	Freezing:
type your answer	Sublimatio	n: type your answer	

12 6 points

(Part 1 of 4) Draw the heating curve for the process of heating 14.0 g pure ice from -18.0 *C to 84 *C and use it to answer the next four questions. What is the heat required to heat the ice to 0 *C? **Answer in joules to the nearest whole**

number.

Type your answer...

13 6 points

(Part 2 of 4) What is the heat required to fully melt the ice at 0 °C? Answer in joules to the nearest whole number.

Type your answer...

14 6 points

(Part 3 of 4) What is the heat required to heat the water from 0 °C to 84 °C? Answer in joules to the nearest whole number.

Type your answer...

15 6 points

(Part 4 of 4) What is the total heat applied during this process? Answer in kilojoules (!) to three significant figures.

Type your answer...

16 6 points

The specific heat for liquid argon and gaseous argon is 25.0 J/mol·°C and 20.8 J/mol·°C, respectively. The enthalpy of vaporization of argon is 6506 J/mol. How much energy is required to convert 1 mole of liquid Ar from 5 °C below its boiling point to 1 mole of gaseous Ar at 5 °C above its boiling point?

Ο 6631 J

- Ο 125 J
- Ο 229 J
- Ο 6735 J
- Ο 6610 J