15 points
Which of the following statements concerning the first law of thermodynamics is/are true? Select all of the correct answers.

The internal energy of the universe is always increasing.The universe is an isolated system.
$\square$ Internal energy lost by a system is always gained by the surroundings.

25 points
Which of the following best describes an endothermic reaction?
O Heat flows out of the system, and the surroundings feel colder
O Heat flows out of the system, and the surroundings feel warmer
O Heat flows into the system, and the surroundings feel warmer
O Heat flows into the system, and the surroundings feel colder

35 points
You take an ice cube out of the freezer, let it melt, and then you boil it. Select all true statements.
$\square$ If the boiled water condenses, it will be an endothermic process
$\square$ The act of boiling was endothermic
$\square$ The act of melting was endothermic
$\square$ If the boiled water condenses, it will be an exothermic process.
The act of boiling was exothermic.

45 points
A system releases heat. What is...

1. the sign of heat flow with respect to the system?
2. the sign of the temperature change of the surroundings?

○ +,+
○ -, +
○ + ,-
$\bigcirc-$,

5 points
Consider the following descriptions. Choose all that are exothermic. I. A combustion reaction releases 12.5 kJ of heat
II. You are standing in the surroundings of a chemical reaction and you feel it get colder
III. You are standing in the surroundings of a chemical reaction and you feel it get warmer
IV. A metal bar is heated from $25^{\circ} \mathrm{C}$ to $36^{\circ} \mathrm{C}$

O I and II
O I, III, and IV
O II and IV
O I and III

65 points
Fire is...
○ not hot
$\bigcirc$ hot
$7 \quad 5$ points
If the products of a reaction have higher heat content than the reactants, then the reaction...
〇 is exothermic.
$\bigcirc$ is endothermic.

8 5 points
How much heat (in kJ ) is required to raise 2.4 cups of water at room temperature to 66 ${ }^{\circ} \mathrm{C}$ ?
Note: Look up any data necessary for this problem online.
$\bigcirc 40.1 \mathrm{~kJ}$
$\bigcirc 160 \mathrm{~kJ}$
$\bigcirc 6.6 \mathrm{~kJ}$
○ 97 kJ
○ 4.2 kJ

95 points
What mass of liquid ethanol ( $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ ) must be burned to supply 500 kJ of heat? The standard enthalpy of combustion of ethanol at 298 K is $-1368 \mathrm{~kJ} / \mathrm{mol}$.
○ 16.8 g
○ 29.7 g
○ 126 g
○ 10.9 g
$10 \quad 5$ points
A piece of metal with a mass of 54.9 g at $97.3^{\circ} \mathrm{C}$ is placed in a calorimeter containing 75.6 g of water at $22.8^{\circ} \mathrm{C}$. The final temperature of the mixture is $28.5^{\circ} \mathrm{C}$. What is the specific heat capacity of the metal? Assume that there is no energy lost to the surroundings.
○ $0.248 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
○ $0.477 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
$0.401 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
$0.389 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
○ $0.712 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$

115 points
Carbon monoxide reacts with oxygen to form carbon dioxide by the following reaction: $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$
$\Delta \mathrm{H}$ for this reaction is -135.28 kcal . How much heat would be released if 12.0 moles of carbon monoxide reacted with 12.0 moles oxygen to produce carbon dioxide?
○ 1620 kcal
O 812 kcal
O 412 kcal
○ 135 kcal

125 points
Burning 1 mol of methane in oxygen to form $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ produces 803 kJ of energy. How much energy is produced when 3 mol of methane is burned?
$\bigcirc 803 \mathrm{~kJ}$
○ 268 kJ
○ 2409 kJ
○ 1606 kJ

135 points
The specific heat capacity is...
O the heat required to raise one mole of substance one degree Celsius
O the temperature required to add 1 J to one gram of substance
O the heat required to to raise one gram of a substance one degree Celsius
O the heat required to raise the temperature of any sample of a substance one degree Celsius

145 points
1000 J is added to a variety of substances（each with the same mass）．In the end，the hottest substance（the one with the highest temperature）will be．．．
O the one with the highest specific heat capacity．
O the one with the lowest specific heat capacity．
O they should all be the same temperature．

155 points
Wood，by weight，is $45 \%$ combustible fuel，i．e．cellulose，which can be treated here as an equivalent mass of glucose， $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ ．The enthalpy of combustion of glucose is－2805 $\mathrm{kJ} / \mathrm{mol}$
Gasoline，by weight，is nearly $100 \%$ combustible fuel，which can be treated here as octane， $\mathrm{C}_{8} \mathrm{H}_{18}$ ．The enthalpy of combustion of octane is $-5460 \mathrm{~kJ} / \mathrm{mol}$ ．
Given all this information，is gasoline or wood able to release more combustion energy per unit mass of material？
O Gasoline，by a factor of 6
O Wood，by a factor of 6
O Gasoline，by a factor of 10
O Gasoline，by a factor of 7
O Wood，by a factor of 7
O Wood，by a factor of 10

165 points
A 30.0 g sample of CsOH （a strong base）is dissolved into 450 mL of $25^{\circ} \mathrm{C}$ water in a coffee－cup calorimeter．The temperature climbs to $32.6^{\circ} \mathrm{C}$ after all the base dissolves． Answer the following three questions about this experiment
（part 1 of 3 ）Is the dissolution process for CsOH exothermic or endothermic？
〇 exothermic
$\bigcirc$ endothermic

## 175 points

（part 2 of 3）Which of the following equations best represents the value of $q$ for the calorimeter？
〇 $q_{\text {cal }}=m_{\mathrm{CsOH}} \cdot C_{\mathrm{s}, \mathrm{CsOH}} \cdot \Delta T_{\text {water }}$
〇 $a_{\text {cal }}=m_{\text {water }} \cdot C_{s, \text { water }} \cdot \Delta T_{\text {water }}$
〇 $q_{\text {cal }}=C_{\text {s，water }} \Delta T_{\text {water }}$
〇 $a_{\text {cal }}=m_{\text {CsOH }} \cdot C_{\text {s，water }} \cdot \Delta T_{\text {salt }}$

185 points
（part 3 of 3）What is the value for $\Delta \mathrm{H}$ for the CsOH dissolving？
Answer in $\mathrm{kJ} / \mathrm{g}$ to 3 significant figures．
Type your answer．．．

195 points
When a certain amount of compound X is burned completely in a bomb calorimeter containing 3000 g of water，a temperature rise of $0.697^{\circ} \mathrm{C}$ is observed．What is $\Delta H$ for the burning of the fuel？
Answer in kJ to 3 significant figures and get the sign right
The hardware component of the calorimeter has a heat capacity of $3.81 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$ ．The specific heat of water is $4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$ ．

Type your answer．．．

205 points
Which of the following hydrocarbon groups（shown as number of carbons in the chain） makes it all the way to the top of a distillation tower at a crude oil refinery？
$\bigcirc>\mathrm{C}_{20}$
－ $\mathrm{C}_{15}-\mathrm{C}_{18}$
○ $\quad C_{5}-C_{12}$
○ $\quad C_{12}-C_{16}$
$\bigcirc \quad C_{1}-C_{4}$

