

5 points

How would you classify the bond in O₂ ?

- O covalent single bond
- O covalent triple bond
- O ionic bond
- O covalent double bond

5 points

When drawing the Lewis structure for ammonia (NH_3), we get how many shared (S), needed (N), and available (A) electrons, and how many lone pairs (LP)?

O S = 3, N = 14, A = 8, LP = 1

- O S = 6, N = 14, A = 8, LP = 1
- O S = 6, N = 14, A = 8, LP = 0
- O S = 6, N = 8, A = 14, LP = 1

4 5 points

How many lone pairs of electrons are on nitrogen in NF₃?

- O zero O three
- O two
- O one

5 points

What are the values of S, N, and A for CH_3COCH_3 ?							
S = shared electrons							
N = needed electrons							
A = available electrons							
Ο	S = 16						
-	N = 40						
	A = 24						
0	S = 20						
-	N = 44						
	A = 24						

- O S = 24 N = 20
- A = 44
- O S = 44 N = 20
- A = 24

6	5 po	ints						
	Select the correct Lewis Dot structure for the molecule containing one C and four atoms.							
	0	F F : C : F : F :	0	F: C: F: F	0	:F: F:C:F: :F:		
	0	: F : : F : C : F : : F :	0	: F : : F : C : F : F : .	0	F : F : C := F		
	0	: F : F : C : F : F : : F :	0	F F:C:F: :F:	0	F:C:F F		
	0	: F : : F : C : F : : F :						

7 5 points

Which of the following compounds contains exactly one unshared pair of valence electrons?

- О H₂S
- O C₂H₄
- O PH₃

9 5 points

Which of the following describes the GC bond in acetylene (ethyne, C_2H_2)?

- O double bond
- O triple bond
- O single bond
- O 1.5 bond in resonance

10 5 points

Resonance is a concept that describes the bonding in molecules...

- O by asserting that electrons in a double bond can delocalize (spill over) onto adjacent single bonds to make a bond and a half.
- O where there is more than one choice of location for a double or triple bond as deduced from Lewis dot structures. The true bonding is the average over all possible multiple bond locations.
- $O_{\ }$ by asserting that double or triple bonds 'flip' or resonate between two locations in the molecule.

15 5 points

Consider the structural formula of a compound that happens to be the active ingredient in many oral anesthetics used in sore throat sprays. What is the molar mass of this

the bond in O_2 ?

- The bond order in O_3 is greater than the bond order in O_2 О
- Ο The bond order in O_2 is greater than the bond order in O_3
- Ο The bond length in O_2 is greater than the bond length in O_3