This homework covers Chapter 1 and 2 in Chembook from sections 1.10-2.11.
Some helpful videos for the challenge questions on this homework include:

- Gas Law Stoichiometry
- Reaction Stoichiometry Limiting Reagent
- Ideal Gas Law

14 points
s
Consider the following unbalanced reaction:
$\mathrm{AgNO}_{3}+\mathrm{K}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Ag}_{3} \mathrm{PO}_{4}+\mathrm{KNO}_{3}$
What is the sum of the coefficients in the balanced reaction?
Note: If there is no coefficient, the coefficient is an understood 1.
○ 8
$\bigcirc 5$
○ 6
$\bigcirc 3$
$\bigcirc 4$
○ 10

24 points

s
Hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ liquid decomposes into hydrogen gas and oxygen gas. Which of the following represents this reaction?
Note: phases are omitted in the answer choices, but do remember the standard state of hydrogen and oxygen gas.
○ $\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2}+\mathrm{O}_{2}$

- $\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}$
- $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{2}$

O $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}$

- $\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}+2 \mathrm{O}$

34 points

s
In which state of matter are the molecules all spread out? This means the distance between the molecules is much larger than the size of the molecules themselves.
\bigcirc gas
\bigcirc liquid
\bigcirc solid

44 points
What are the key physical properties of solids?the molecules are very close to each othermolecules are in static positions relative to neighboring moleculesmolecules are in constant translational motion relative to each othermolecules are very far apart from each othermolecules are very close to each other but also move considerably among themselves

54 points

s
Which of the following substances listed has the smallest percentage in the make up of the typical composition of air here in Austin, TX on a humid day?
$\bigcirc \operatorname{argon}(\mathrm{Ar})$
\bigcirc nitrogen $\left(\mathrm{N}_{2}\right)$
O oxygen $\left(\mathrm{O}_{2}\right)$

- carbon dioxide $\left(\mathrm{CO}_{2}\right)$
\bigcirc water $\left(\mathrm{H}_{2} \mathrm{O}\right)$

Which of the following layers of the atmosphere is closest to the ground?
O Troposphere
\bigcirc Ozone
O Stratosphere
O Mesosphere

74 points

Which of the following simple ratios of nitrogen to oxygen is the most accurate for describing the air on this planet.
(ratios are all written as nitrogen : oxygen)
O 4:1
○ $1: 2$
O 2:1
○ $3: 2$
〇 $3: 1$

84 points

Which of the following substances is most variable in our atmosphere?
\bigcirc Water vapor
O Carbon dioxide
O Nitrogen
\bigcirc Argon

94 points
What is the name and the approximate molar mass of $\mathrm{C}_{5} \mathrm{H}_{12}$?
O Heptane, $74 \mathrm{~g} / \mathrm{mol}$
O Pentane, $68 \mathrm{~g} / \mathrm{mole}$
O Hexane, $72 \mathrm{~g} / \mathrm{mol}$

- Pentane, $72 \mathrm{~g} / \mathrm{mol}$

O Pentane, $74 \mathrm{~g} / \mathrm{mol}$
O Hexane, $86 \mathrm{~g} / \mathrm{mol}$

- Pentonium, $72 \mathrm{~g} / \mathrm{mol}$

104 points

Which carbon compound contains the fewest carbon atoms?
O Methane
O Hexane
\bigcirc Propane
O Chlorobutane

114 points

According to Boyle's Law, pressure and volume have a(n)...
〇 indirect relationship
O direct relationship
O inverse relationship
O none of these are correct

A container holding an ideal gas is compressed to half its original volume at constant temperature. According to Boyle's Law, the pressure of the gas..
\bigcirc halves
\bigcirc doubles
O triples
〇 quadruples

134 points
\gg
An inflated balloon has a volume equal to 2.3 L at $20^{\circ} \mathrm{C}$. When the temperature is reduced to $10^{\circ} \mathrm{C}$, the volume...
\bigcirc doubles
O is halved

- decreases by a small amount

O increases by a small amount

144 points
Catalytic converters reduce the amount of \qquad in car exhaust.
$\bigcirc \mathrm{CO}$
$\bigcirc \mathrm{O}_{3}$
○ CO_{2}

- N_{2}

154 points
The two most abundant gases in an inhaled breath are...
O Nitrogen and oxygen
O Nitrogen and water vapor
\bigcirc Oxygen and carbon dioxide
Carbon dioxide and nitrogen

164 points
The air we exhale contains about 100 times more of which gas than the air we breathe from the atmosphere?
O Carbon dioxide
O Argon
O Oxygen
O Nitrogen

174 points
Which pollutant is present as a solid particulate in air?
\bigcirc Soot
O Ozone
Carbon monoxide
Sulfur dioxide

184 points
Which of the following pollutantscannot be detected by odor?
○ CO
$\bigcirc O_{3}$
$\bigcirc \mathrm{NO}_{\mathrm{x}}$
$\bigcirc \mathrm{SO}_{x}$

194 points
Refer to the graph of elevation vs pressure found here. What is the approximate pressure (in kPa) at 4500 m altitude?
○ 57 kPa
$\bigcirc 50 \mathrm{kPa}$
$\bigcirc 60 \mathrm{kPa}$
O 63 kPa
○ 45 kPa

204 points
A 34 L container holds 0.80 moles of gas at 300 K . What is the pressure (in atm)?
○ 0.58 atm

- 20 atm

○ 440 atm
○ 1.2 atm

214 points
\rightarrow
A gas is expanded from 3.60 L and 76.8 kPa to 8.10 L at constant temperature. What is the final pressure?
O 2240 kPa
○ 34.1 kPa
○ 173 kPa
○ 68.2 kPa
○ 9.48 kPa
$\bigcirc 86.4 \mathrm{kPa}$

An industrial tube used to transport methane has an internal temperature equal to $18{ }^{\circ} \mathrm{C}$. When high quantities of methane are transported, the pressure increases to 3.6 atm in 12 L of tubing. How many moles of methane (n) are present in this 12 L tubing?
0.038 moles

29 moles
3.6 moles

- 1.8 moles

234 points

Consider the following unbalanced environmental reaction:
$\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{NO}(\mathrm{g})$
First balance the reaction. Then calculate the volume of NO gas produced when 0.952 moles of NO_{2} are reacted to completion with excess $\mathrm{H}_{2} \mathrm{O}$ at STP.
Reminder: STP is $0^{\circ} \mathrm{C}$ and 1 atm pressure. One mole occupies 22.4 L at STP.
○ 4.80 L

- 7.11 L
- 43.8 L
(32.7 L
85.7 L

244 points
Your friend is using the ideal gas law to solve a question. Your friend's work is shown below:

$$
\begin{gathered}
\text { PV }=n R T \\
(3.7 \mathrm{~atm})(4.3 \mathrm{~L})=(0.5 \mathrm{moles})(\mathrm{R})(387.77 \mathrm{~K})
\end{gathered}
$$

What is the proper R value to complete the equation?
O 0.08206 L Torr $/ \mathrm{mol} \mathrm{K}$
$0.08206 \mathrm{~L} \mathrm{~atm} / \mathrm{mol} \mathrm{K}$
$8.314 \mathrm{~J} / \mathrm{mol} \mathrm{K}$

- 62.36 L Torr / mol K
- $62.36 \mathrm{~L} \mathrm{~atm} / \mathrm{mol} \mathrm{K}$

254 points

Write and balance the chemical equation for the combustion of octane to the lowest whole number coefficients. What are the reactants and products of this reactionincluding coefficients of the chemical equation when balance)?

Reactants: 2 octane, 25 oxygen
Products: 16 carbon dioxide, 18 water
Reactants: 1 octane, 1 oxygen Products: 1 carbon dioxide, 1 water

Reactants: 2 octane, 25 carbon dioxide Products: 16 oxygen, 18 water
O Reactants: 25 octane, 2 oxygen
Products: 18 carbon dioxide, 16 water

