HW03	
Question 1	1 pts
What is the coefficient of lead (I are balanced?	Pb) in the redox reaction after the following half-reactions
	$Pb \longrightarrow Pb^{2+} + 2e^{-}$
	Fe^{3+} + $3e^{-}$ Fe
Question 2	1 pts

What is the sum of coefficients in the redox reaction after the following half-reactions are balanced?

$AI \rightarrow$	AI^{3+}	+	3e⁻
Cu ²⁺ +	2e ⁻	\rightarrow	Cu

Question 3	1 pts
In the reaction of thiosulfate ion with chlorine gas in an acidic solution, what is the reducing agent?	
$Cl_2(g) + S_2O_3^{2-}(aq) \longrightarrow Cl^-(aq) + SO_4^{2-}(aq)$	
⊖ Cl	
○ S ²⁺	
○ S ₂ O ₃ ²⁻	
◯ Cl ₂	

Question 4			
Based on the push and pul			

Based on the push and pull of electrons in a redox reaction, it can be inferred that the
species being oxidized is also the

reducing agent

strong acid

🔘 oxidizer

oxidizing agent

Question 5

What is the change in oxidation number of sulfur when SO_3 reacts to form SO^- in a redox reaction?

 Question 6
 1 pts

 When Na2Cr2O7 reacts to form Cr(OH)3, the Cr atom gets _____ and the change in oxidation number is equal to ____.
 and the change in _____.

 reduced, -6
 _____.

 oxidized, +3
 _____.

 oxidized, -3
 _____.

1 pts

What is the oxidation number of chlorine in CIO_4 -?

Question 8

Question 7

What is the oxidation number of sulfur in SO_4^{2-} ?

Question 9

What is the oxidation number of an individual sulfur in thiosulfate, $S_2O_3^{2-2}$?

Question 12Consider the cell reaction represented by the skeletal equation: $Mn(s) + Ti^{2+}(aq) \longrightarrow Mn^{2+}(aq) + Ti(s)$ What is the proper cell diagram for this reaction? $Ti^{2+}(aq) | Ti(s) || Mn(s) | Mn^{2+}(aq)$

 \bigcirc Mn²⁺(aq) | Mn(s) || Ti(s) | Ti²⁺(aq)

 \bigcirc Mn(s) | Mn²⁺(aq) || Ti²⁺(aq) | Ti(s)

─ Ti(s) | Ti²⁺(aq) || Mn²⁺(aq) | Mn(s)

1 pts

1 pts

1 pts

1 pts

1 pts

Consider the cell:
Zn(s) Zn ²⁺ (aq) Cl ⁻ (aq) AgCl(s) Ag(s)
Calculate E°.
○ -1.20 V
○ +1.20 V
○ +0.98 V
○ +0.54 V

Question 14

1 pts

In a working electrochemical cell (a voltaic or a battery), the cations in the salt bridge move toward the cathode.

It is impossible to tell unless we know if the cathode is "+" or "-".

True

It depends on the charge of the cation.

False

Question 15

1 pts

What is the voltage of a standard voltaic cell made from the following half-reactions?

$Cu^{2+} + 2e^{-} \rightarrow Cu$	

$Mg^{2+} + 2e^{-} \rightarrow Mg$

🔿 2.70 V

🔿 -2.02 V

🔿 2.02 V

🔿 -2.70 V

Question 16

For the cell in the previous question, identify the solid anode and cathode.

- O Cu: cathode
- Mg: anode
- Cu: anode
 Mg: cathode

Question 17

1 pts

1 pts

What is the voltage of a standard electrolytic cell made from the following half-reactions?

$$Ag^+ + e^- \rightarrow Ag$$

 $Al^{3+} + 3e^- \rightarrow Al$

○ -2.46 V			
🔿 -1.66 V			
🔘 0.86 V			
🔿 2.46 V			
○ -0.86 V			

Question	18	1 pts	
Use the foll	owing tat	ble for the	next three questions:
F ₂ + 2e	₹ 2F	+2.87 V	
Pb ⁴⁺ +2e [−]	≓ Pb ²⁺	+1.67 V	
Cl ₂ + 2e [−]	≓ 2CI⁻	+1.36 V	

Fe ³⁺ + e ⁻	≓ Fe²	2+	+0.77 V
Cu ²⁺ + 2e ⁻	; ;	Cu	+0.34 V
2H ⁺ + 2e [−]	\rightleftharpoons	H_2	0.000 V
Fe ³⁺ + 3e ⁻	⇒	Fe	-0.04 V
Pb ²⁺ + 2e ⁻	; ;	Pb	–0.13 V
Fe ²⁺ + 2e [−]	⇒	Fe	-0.44 V
Zn ²⁺ + 2e [−]	; ;	Zn	–0.76 V
Al ³⁺ + 3e ⁻	\rightleftharpoons	AI	-1.66 V
Mg ²⁺ + 2e ⁻	⇒	Mg	-2.36 V
Li⁺ + e ⁻	\rightleftharpoons	Li	-3.05 V

Ag⁺ + e[−] ⇒ Ag +0.80 V

Which out of the following is the strongest reducing agent?

○ Mg	
⊖ Ag⁺	
○ Li ⁺	
⊖ Zn	
⊖ Ag	

Question 19

1 pts

What is the standard cell potential for the strongest battery possible using the table? Note: for this question, only compare standard cell potential to assess the strength of the battery.

🔿 2.87 V			
🔿 0.00 V			
🔿 3.05 V			
🔿 5.92 V			

Question 20

1 pts

If you wanted to spontaneously reduce AI^{3+} to form AI, you should pair it with...

- the oxidation of Pb
- the S.H.E reaction
- the reduction of Mg
- the oxidation of Mg

Question 21

1 pts

In a voltaic cell...

- electrical energy is used to reverse spontaneous chemical reactions
- oxidation takes place at the cathode
- O oxidation and reduction take place at the same time, but at different electrodes
- electrolytes are added to carry electrons between electrodes

Question 22 1 pts

A discharging battery is a voltaic cell, meaning it is...

O non-spontaneous with a positive cell potential

spontaneous with a negative cell potential

non-spontaneous with a negative cell potential

spontaneous with a positive cell potential