HW 01

Question 1

Which of the following accurately explains a reason why water is so important for biology and chemistry?

Water is a very large organic molecule capable of dissolving many other organic molecules

- The polar hydrogen bonds of water cause it to be a stable solid at room temperature
- Water is a nonpolar molecule with a low molecular weight, causing it to be easily vaporized at room temperature

The polar hydrogen bonds of water cause it to be a liquid capable of dissolving many other polar solutes at room temperature

Question 2

1 pts

Which of the following explains why water is a liquid at room temperature?

- Water is a large organic molecule
- Water has a relatively small molecular weight
- Water is nonpolar
- Water contains hydrogen bonds

Question 3 1 pts Which of the following best classifies pure water and pure sodium chloride (NaCl)? O Pure Water: nonpolar covalent molecule NaCI: ionic compound Pure Water: ionic compound NaCl: ionic compound Pure Water: nonpolar covalent molecule NaCI: polar covalent molecule O Pure Water: polar covalent molecule NaCl: ionic compound

Question 4

1 pts

Which of the following images represents a hydrated anion?

Question 5

Which ions are produced by a base in an aqueous solution?

O OH-		
◯ Na ⁺		
○ SO4 ²⁻		
⊖ CI [_]		

Question 6	1 pts
A solution is known to have a pH that is equal to 8.32. Which statement best descr this solution?	ribes
 the solution is slightly acidic 	
○ the solution is very acidic	
◯ the solution is very basic	
 the solution is slightly basic 	

Question 7

1 pts

Which of the following concentrations represents a basic solution at room temperature?

- [OH⁻] = 1 x 10⁻⁷ M
- [OH⁻] = 1.8 x 10⁻⁴ M
- [OH⁻] = 1.8 x 10⁻⁹ M
- [OH⁻] = 1.8 x 10⁻¹¹ M

Question 8	1 pts

Rank the following solutions in order of increasing acidity:

Solution A: pH = 1.54Solution B: pH = 7.00 Solution C: pH = 9.42 Solution D: pH = 5.31

Solution C < Solution B < Solution D < Solution A
Solution A < Solution D < Solution B < Solution C
Solution A < Solution B < Solution C < Solution D
Solution D < Solution A < Solution B < Solution C
Solution B < Solution A < Solution D < Solution C

Question 9

1 pts

What is $[H_3O^+]$ when $[OH^-] = 3.3 \times 10^{-9} M$?

◯ 3.3 x 10 ⁻⁹ M			
◯ 3.0 x 10 ⁻⁶ M			
◯ 1.0 x 10 ⁻⁷ M			
◯ 3.3 x 10 ⁻⁵ M			

Question 10	1 pts
Every increase of one pH unit means	
\bigcirc there are 10 times fewer H ⁺ ions in solution	
the acidity is slightly increased	
\bigcirc there are 10 times more H ⁺ ions in solution	
○ there are 10 fewer H ⁺ ions in solution	

Question 11

The pH of lemon juice is approximately 2.40. At this pH, the hydronium (H_3O^+) ion concentration is closest to which concentration?

- 🔘 0.38 M
- 2.5 x 10⁻¹² M
- 5.6 x 10⁻⁴ M
- 4.0 x 10⁻³ M

Question 12

1 pts

1 pts

What is the pH of 0.023 M HCI? Note: 2 sig-figs in a logarithmic scale would be X.XX.

Quesi		J
-------	--	---

What is the pH of a 0.0156 M NaOH solution?

Note: Report 3 digits after the decimal.

Question 14

The hydronium ion (H₃O⁺) concentration in a solution with pH 10 is _____ than the hydronium ion concentration in a solution with pH 13.

- 3 times more
- 300 times less
- 1000 times less
- 1000 times more
- 30 times more

Question 15

0.15 moles of strong acid are added to 0.15 moles weak base in aqueous solution. How would you describe the resulting solution?

- A weakly acidic salt
- A strongly acidic solution
- A weakly basic salt
- A strongly basic solution

Question 16

1 pts

1 pts

Consider the classic strong acid/base neutralization reaction of hydrochloric acid (HCI) and sodium hydroxide (NaOH).

HCl(aq) +	NaOH(aq) →
-----------	------------

How many mL of 0.0362 M NaOH are needed to neutralize 30.0 mL of 0.0438 M HCI ?

NaCl(aq) + $H_2O(\ell)$

🔘 41.8 mL 🔘 36.3 mL 🔘 30.0 mL 🔵 27.1 mL

🔵 24.8 mL

🔵 33.7 mL

1 pts