HW08

Question 1

In a few strange studies, the specific heat capacity of a bed bug was measured to be around 3.18 J/g $^{\circ}$ C. An average bed bug has a mass equal to 3 mg. Suppose you round up all the bed bugs in UTC (let's call it 15,000 bed bugs) into a small room and apply heat to terminate the bed bugs. How much energy would it take to raise the average temperature of the bed bugs from 25 $^{\circ}$ C to 46 $^{\circ}$ C?

Answer in units of kJ to only two significant figures.

Question 2

1 pts

A 1.00 g sample of n-hexane (C₆H₁₄) undergoes complete combustion with excess O₂ in a bomb calorimeter. The temperature of the 1815 g of water surrounding the bomb rises from 26.15°C to 29.97°C. The heat capacity of the hardware component of the calorimeter (everything that is not water) is 5068 J/°C. What is the *change in energy* for the combustion of n-C₆H₁₄? One mole of n-C₆H₁₄ is 86.1 g. The specific heat of water is 4.184 J/g·°C.

- ─ -6.33 x 10⁴ kJ/mol
- -4.40 x 10³ kJ/mol
- -4.16 x 10³ kJ/mol
- -5.25 x 10³ kJ/mol

Question 3

1 pts

Calculate the change in enthalpy of the following reaction in kJ/mol using bond energy data:

 $\mathsf{CIF}+\mathsf{CO}\longrightarrow\mathsf{COCIF}$

Question 4

1 pts

Using the bond energy data provided, calculate ΔH for the following reaction:

 $H_{2}(g) + Cl_{2}(g) \rightarrow 2HCl(g)$

Bond	Bond Energy (kJ/mol)
H–H	436
CI–CI	242
H–CI	432

🔵 186 kJ/mol

🔵 246 kJ/mol

🔵 -246 kJ/mol

🔵 -186 kJ/mol

Question 5	1 pts
Estimate the change in enthalpy of the following reaction using bond energy data:	
Estimate the change in changy of the following redetion using bond energy data.	
$N_{2}H_{4}\left(g ight)$ + $H_{2}\left(g ight)$ \longrightarrow $2NH_{3}\left(g ight)$	
850 kJ/mol	
○ -1469 kJ/mol	
-183 kJ/mol	
1241 kJ/mol	
Question 6	1 pts

What is the value of heat flow for the combustion of hydrogen in kJ/g? ΔH° for this	;
process is -286 kJ/mol.	

🔵 572 kJ/g		
🔿 -572 kJ/g		
🔿 -286 kJ/g		
🔵 -71.5 kJ/g		
🔿 -143 kJ/g		

Question 7	1 pts
Which of the following is the most efficient fuel based on its combustion enthalpy page of gram?	er
⊖ octane	
hydrogen	
⊖ wood	
⊖ methane	
coal	

What is the more efficient method to break a high molar mass fraction from a crude oil refinery down to a specific fuel? catalytic cracking thermal cracking fractional distillation	Question 8	1 pts
thermal cracking	-	le oil
	catalytic cracking	
fractional distillation	 thermal cracking 	
	fractional distillation	

Question 9

1 pts

An octane isomer can be made into a more efficient fuel by adding branching through the process of...

- catalytic cracking
- fractional distillation
- catalytic reforming

Question 10

If you want to calculate the heat flow involving a temperature change, which equation will you use?

\checkmark Σn bonds breaking -Σn bonds forming

() q = m∆H

 $\bigcirc q = mC_{s} \Delta T$

○ q = mC

 $\bigcirc q = 2(m - C_s \Delta T)$

Question 11

1 pts

If you want to calculate the heat flow involving a phase change, which equation will you use?

$\bigcirc q = mC_{s\Delta}T$

Σn bonds breaking -Σn bonds forming

 $\bigcirc q = 2(m - C_s \Delta T)$

○ q = mC

 $\bigcirc q = m \triangle H_{trans}$

Question 12

1 pts

If you want to calculate the heat flow involving bond energy data, which equation should you use?

$\bigcirc q = m \Delta H_{trans}$

🔿 q = mC

 $\bigcirc q = 2(m - C_s \Delta T)$

 $\bigcirc q = mC_{s}\Delta T$

 $^{\bigcirc}$ Σn bonds breaking -Σn bonds forming

Question 13	1 pts
Designate the sign of the heat flow (+ or -) for each of the following physical chang	es:
Vaporization:	
Fusion:	

1 pts

Freezing:			
Sublimation:			

Question 14

(Part 1 of 4) Draw the heating curve for the process of heating 14.0 g pure ice from -18.0 °C to 84 °C and use it to answer the next four questions.

What is the heat required to heat the ice to 0 $^\circ\text{C}?$ Answer in joules to the nearest whole number.

Question 15

(Part 2 of 4) What is the heat required to fully melt the ice at 0 °C? **Answer in joules to the nearest whole number.**

Question 16

(Part 3 of 4) What is the heat required to heat the water from 0 °C to 84 °C? **Answer in** joules to the nearest whole number.

Question 17

1 pts

1 pts

1 pts

1 pts

(Part 4 of 4) What is the total heat applied during this process? **Answer in kilojoules (!)** to three significant figures.

Question 18	1 pts
The specific heat for liquid argon and gaseous argon is 25.0 J/mol·°C and 20.8 J/m respectively. The enthalpy of vaporization of argon is 6506 J/mol. How much energ required to convert 1 mole of liquid Ar from 5 °C below its boiling point to 1 mole of gaseous Ar at 5 °C above its boiling point?	y is
○ 6610 J	
○ 6631 J	
○ 125 J	
🔿 6735 J	

🔵 229 J