1																	18
${ }_{1}^{1} \underset{1.008}{\mathrm{H}}$	2											13	14	15	16	17	$\begin{aligned} & 2 \\ & \mathrm{He} \\ & 4.003 \\ & \hline \end{aligned}$
$\begin{array}{\|l\|} \hline 3 \\ \hline 6.941 \\ \hline \end{array}$	4 Be 9.012											$\begin{array}{\|c} 5 \\ \mathrm{~B} \\ 10.81 \\ \hline \end{array}$	${ }^{6} \mathrm{C}$	${ }^{7} \underset{14.01}{\mathrm{~N}}$	${ }^{8}{ }_{16.00}$	${ }_{19}^{9} \underset{19.00}{ }$	$\begin{array}{\|l\|} \hline 10 \\ \mathrm{Ne} \\ 20.18 \\ \hline \end{array}$
$\begin{array}{\|l\|} \hline 11 \\ \mathrm{Na} \\ 22.99 \\ \hline \end{array}$	$\begin{aligned} & 12 \\ & \mathrm{Mg} \\ & 24.31 \end{aligned}$	3	4	5	6	7	8	9	10	11	12	$\begin{gathered} 13 \\ \mathrm{Al} \\ 26.98 \end{gathered}$	$\begin{array}{\|c} \hline 14 \\ \mathrm{Si} \\ 28.09 \end{array}$	$\begin{gathered} 15 \\ \mathrm{P} \\ 30.97 \end{gathered}$	${ }_{32.07}^{16}$	$\begin{array}{\|c\|} \hline 17 \\ \mathrm{Cl} \\ 35.45 \end{array}$	$\begin{array}{\|l\|} \hline 18 \\ \mathrm{Ar} \\ \mathrm{Ar} \\ \hline 39.95 \\ \hline \end{array}$
$\begin{gathered} 19 \\ \mathrm{~K} \\ 39.10 \end{gathered}$	$\begin{gathered} 20 \\ \mathrm{Ca} \\ 40.08 \end{gathered}$	$\begin{array}{\|c} \hline 21 \\ \mathrm{Sc} \\ \hline 44.96 \end{array}$	$\begin{gathered} \hline 22 \\ \mathrm{Ti} \\ 47.87 \end{gathered}$	$\begin{gathered} 23 \\ \mathrm{~V} \\ 50.94 \end{gathered}$	${ }_{52.00}^{24}$	$\begin{array}{\|l\|} \hline 25 \\ \mathrm{Mn} \\ 54.94 \end{array}$	$\begin{array}{\|} 26 \\ \mathrm{Fe} \\ 55.85 \end{array}$	$\begin{array}{\|c} \hline 27 \\ \mathrm{Co} \\ 58.93 \end{array}$	$\begin{array}{\|c} 28 \\ \mathrm{Ni} \\ 58.69 \end{array}$	$\stackrel{29}{\mathrm{Cu}}$ 63.55	$\begin{aligned} & 30 \\ & \mathbf{Z n} \\ & 65.38 \end{aligned}$	31	$\begin{gathered} 32 \\ \text { Ge } \\ 72.64 \end{gathered}$	$\begin{array}{\|c} \hline 33 \\ \mathrm{As} \\ 74.92 \end{array}$	$\begin{gathered} 34 \\ \mathrm{Se} \\ 78.96 \end{gathered}$	$\begin{gathered} 35 \\ \mathrm{Br} \\ 79.90 \end{gathered}$	$\begin{gathered} 36 \\ \mathrm{Kr} \\ 83.80 \end{gathered}$
$\begin{array}{\|l\|} \hline 37 \\ R b \\ 85.47 \\ \hline \end{array}$	$\begin{gathered} 38 \\ \mathrm{Sr} \\ 87.62 \end{gathered}$	$\begin{array}{\|c\|} \hline 39 \\ Y \\ 88.91 \end{array}$	$\begin{gathered} 40 \\ \mathrm{Zr} \\ 91.22 \end{gathered}$	$\begin{gathered} \hline 41 \\ \mathrm{Nb} \\ 92.91 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 42 \\ & \mathrm{Mo} \\ & 95.94 \\ & \hline \end{aligned}$	$\begin{gathered} 43 \\ \text { TC } \\ (98) \end{gathered}$	44 Ru 101.07	45 Rh 102.91	$\stackrel{46}{\mathrm{Pd}}$ 106.42	47 Ag 107.87	$\begin{array}{\|l\|} \hline 48 \\ \hline 112.41 \end{array}$	$\begin{aligned} & \hline 49 \\ & \ln \\ & 114.82 \end{aligned}$	$\begin{gathered} 50 \\ \mathrm{Sn} \\ 118.71 \end{gathered}$	51 121.76	$\begin{array}{\|l} \hline 52 \\ \mathrm{Te} \\ \\ \hline 127.60 \end{array}$	$\stackrel{53}{{ }_{126.90}}$	$\begin{array}{\|c} \hline 54 \\ \text { Xe } \\ 131.29 \end{array}$
$\begin{aligned} & 55 \\ & \text { Cs } \\ & 132.91 \end{aligned}$	56 Ba 137.33	$\stackrel{57}{\text { La }}$	$\stackrel{72}{\mathrm{Hf}}{ }_{178.49}$	$\begin{aligned} & \hline \begin{array}{l} 73 \\ \mathrm{Ta} \\ 180.95 \end{array} \end{aligned}$	$\begin{array}{\|c} 74 \\ \mathrm{~W} \\ 183.84 \end{array}$	$\stackrel{75}{\mathrm{Re}}$ 186.21	$\begin{array}{\|l} \hline 76 \\ \text { Os } \\ 190.23 \end{array}$	$\begin{aligned} & \hline 77 \\ & \text { Ir } \\ & \text { 192.22 } \end{aligned}$	$\begin{array}{\|c} \hline 78 \\ \mathrm{Pt} \\ 195.08 \end{array}$	79 Au 196.97	$\begin{gathered} 80 \\ \mathrm{Hg} \\ 200.59 \end{gathered}$	$\begin{aligned} & \hline 81 \\ & \mathrm{TI} \\ & 204.38 \end{aligned}$	82 Pb 207.20	83 Bi 208.98	84 Po (209)	$\begin{gathered} 85 \\ \mathrm{At} \end{gathered}$ (210)	$\begin{gathered} 86 \\ R n \end{gathered}$ (222)
$\begin{array}{\|l} \hline 87 \\ \mathrm{Fr} \\ (223) \end{array}$	88 Ra (226)	89 Ac (227)	$\underset{(267)}{104}$	$\begin{array}{c\|} \hline 105 \\ \mathrm{Db} \\ (268) \end{array}$	$\begin{gathered} 106 \\ \mathrm{Sg} \\ (269) \end{gathered}$	$\begin{gathered} 107 \\ \mathrm{Bh} \\ (270) \end{gathered}$	$\begin{gathered} 108 \\ \mathrm{Hs} \\ (270) \end{gathered}$	109 Mt (278)	$\begin{array}{\|c\|} \hline 110 \\ \text { Ds } \\ (281) \\ \hline \end{array}$	$\stackrel{111}{\mathrm{Rg}}$ (282)	$\begin{gathered} 112 \\ \text { Cn } \\ (285) \end{gathered}$	113 Nh (286)	$\begin{gathered} 114 \\ \text { FI } \\ (289) \end{gathered}$	$\begin{aligned} & 115 \\ & \mathrm{Mc} \\ & (290) \end{aligned}$	$\begin{gathered} 116 \\ \text { LV } \\ (293) \end{gathered}$	$\begin{gathered} 117 \\ \text { Ts } \\ (294) \end{gathered}$	$\begin{gathered} 118 \\ \mathrm{Og} \\ \text { (294) } \end{gathered}$

58 Ce 140.12	59 Pr	60 Nd 144.24	$\stackrel{61}{\text { Pm }}$	$\stackrel{62}{\text { Sm }}$	${ }_{151.96}^{63}$	$\stackrel{64}{\text { Gd }}$	65 Tb 158.93	$\text { 66 }{ }^{\text {Dy }}$ 162.50	$\stackrel{67}{\mathrm{Ho}}$	68 Er 167.26	Tm 168.93	$\begin{gathered} 70 \\ \mathrm{Yb} \end{gathered}$ 173.04	$\begin{array}{\|c} \hline 71 \\ \text { Lu } \\ 174.97 \end{array}$
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm		N	Lr
232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)			(266)

constants

$R=0.08206 \mathrm{~L} \mathrm{~atm} / \mathrm{mol} \mathrm{K}$
$R=8.314 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
$N_{\mathrm{A}}=6.022 \times 10^{23} / \mathrm{mol}$
$h=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
$c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$g=9.81 \mathrm{~m} / \mathrm{s}^{2}$

conversions

$1 \mathrm{~atm}=760$ torr
$1 \mathrm{~atm}=101325 \mathrm{~Pa}$
$1 \mathrm{~atm}=1.01325 \mathrm{bar}$
1 bar $=10^{5} \mathrm{~Pa}$
${ }^{\circ} \mathrm{F}={ }^{\circ} \mathrm{C}(1.8)+32$
$\mathrm{K}={ }^{\circ} \mathrm{C}+273.15$
conversions
$1 \mathrm{in}=2.54 \mathrm{~cm}$
$1 \mathrm{ft}=12 \mathrm{in}$
$1 \mathrm{yd}=3 \mathrm{ft}$
$1 \mathrm{mi}=5280 \mathrm{ft}$
$1 \mathrm{lb}=453.6 \mathrm{~g}$
1 ton $=2000 \mathrm{lbs}$
1 tonne $=1000 \mathrm{~kg}$
1 gal $=3.785 \mathrm{~L}$
1 gal $=231 \mathrm{in}^{3}$
$1 \mathrm{gal}=128 \mathrm{fl} \mathrm{oz}$
$1 \mathrm{fl} \mathrm{oz}=29.57 \mathrm{~mL}$
water data
$C_{\mathrm{s}, \text { ice }}=2.09 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
$C_{\mathrm{s}, \text { water }}=4.184 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$
$C_{\mathrm{s}, \text { steam }}=2.03 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
$\rho_{\text {water }}=1.00 \mathrm{~g} / \mathrm{mL}$
$\rho_{\text {ice }}=0.9167 \mathrm{~g} / \mathrm{mL}$
$\rho_{\text {seawater }}=1.024 \mathrm{~g} / \mathrm{mL}$
$\Delta H_{\text {fus }}=334 \mathrm{~J} / \mathrm{g}$
$\Delta H_{\mathrm{vap}}=2260 \mathrm{~J} / \mathrm{g}$
$K_{\mathrm{w}}=1.0 \times 10^{-14}$

This exam should have exactly 20 questions. Each question is equally weighted at 5 points each. Bubble in your answer choices on the bubblehseet provided. Your score is based on what you bubble on the bubblesheet and not what is circled on the exam.

1. Which of the following types of radiation is capable of ionizing organic molecules like DNA?
a. UV-C radiation
b. infrared radiation
c. orange light
d. radio waves
e. blue light
2. Compared to yellow light, ultraviolet light will have a...
I. shorter wavelength
II. lower frequency
III. higher energy
IV. greater velocity
a. I, II, III, and IV
b. I and IV
c. I, III, and IV
d. I and III
3. Your chemist friend suggests that you tune the radio to 3.0333 m , but you know that radio stations are listed as frequencies in MHz. What radio station is this?
a. 93.7 KLBJ
b. 101.5 KROX
c. 93.3 KGSR
d. 98.9 KUT
e. 103.5 BOB
4. What is the wavelength of a $2.45 \times 10^{9} \mathrm{~Hz}$ wave?
a. 0.753 m
b. 0.122 m
c. $8.17 \times 10^{-18} \mathrm{~m}$
d. $1.62 \times 10^{-24} \mathrm{~m}$
e. 7.53 m
5. What is the energy of a single 680 nm red light photon?
a. $2.92 \times 10^{-19} \mathrm{~J}$
b. $2.92 \times 10^{-17} \mathrm{~J}$
c. $3.88 \times 10^{-21} \mathrm{~J}$
d. $2.66 \times 10^{38} \mathrm{~J}$
e. $4.51 \times 10^{-40} \mathrm{~J}$
6. It takes light with a frequency of approximately $2.687 \times 10^{15} \mathrm{~Hz}$ to break the triple bond between carbon and oxygen in carbon monoxide. Calculate the energy (in $\mathrm{kJ} / \mathrm{mol}$) necessary to break one mole of carbon-oxygen triple bonds.
a. $945.2 \mathrm{~kJ} / \mathrm{mol}$
b. $4.455 \times 10^{-17} \mathrm{~kJ} / \mathrm{mol}$
c. $1.780 \times 10^{-18} \mathrm{~kJ} / \mathrm{mol}$
d. $1072 \mathrm{~kJ} / \mathrm{mol}$
e. $687.2 \mathrm{~kJ} / \mathrm{mol}$
7. Complete the sentence regarding the energy levels of an electron in the hydrogen atom. As the principal quantum number increases,
a. the spacing between successive energy levels increases
b. the spacing between successive energy levels decreases
c. the energy levels remain degenerate
d. the spacing between successive energy levels remains constant
8. Which of the following quantum number sets is not possible?
a. $n=4, \quad \ell=3, \quad m_{\ell}=0, \quad m_{s}=\frac{1}{2}$
b. $n=4, \quad \ell=2, \quad m_{\ell}=3, \quad m_{s}=\frac{1}{2}$
c. $n=1, \quad \ell=0, \quad m_{\ell}=0, \quad m_{s}=-\frac{1}{2}$
d. $n=3, \quad \ell=1, \quad m_{\ell}=-1, \quad m_{s}=\frac{1}{2}$
e. $n=5, \quad \ell=2, \quad m_{\ell}=-2, \quad m_{s}=\frac{1}{2}$
9. Which subshell contains an electron with the following quantum number set?
$n=4, \quad \ell=0, \quad m_{\ell}=0, \quad m_{s}=\frac{1}{2}$
a. 4 s
b. 4 p
c. 4 d
d. 4 f
e. 3 s
f. 3 p
g. 3 d
10. How many unpaired electrons will you find in the electronic configuration of nitrogen?
a. 3
b. 2
c. 1
d. 0
e. 5
11. What is the electron configuration for the oxide anion?
a. $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{4}$
b. $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6}$
c. $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 3 \mathrm{p}^{4}$
d. $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{2}$
e. $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 3 \mathrm{p}^{2}$
12. What is the electron configuration for selenium, Se?
a. $[\mathrm{Kr}] 4 \mathrm{~s}^{2} 4 \mathrm{~d}^{10} 4 \mathrm{p}^{4}$
b. $[\operatorname{Ar}] 4 \mathrm{~s}^{2} 4 \mathrm{~d}^{10} 4 \mathrm{p}^{6}$
c. $[\operatorname{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{10} 4 \mathrm{p}^{4}$
d. $[\operatorname{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{10} 4 \mathrm{p}^{6}$
e. $[\operatorname{Ar}] 4 s^{2} 4 p^{4}$
13. The following species are isoelectronic. Select the atom or ion that will have the largest radius.
a. S^{2-}
b. Ca^{2+}
c. Cl^{-}
d. Ar
e. K^{+}
14. Name the following compounds: AlPO_{4} and SO_{2} ?
a. aluminum phosphoxide and sulfur dioxide
b. aluminum phosphate and sulfur dioxide
c. aluminum phosphate and sulfur oxide
d. aluminum phosphite and sulfur oxide
e. aluminum phosphoxide and sulfur oxide
f. aluminum phosphite and sulfur dioxide
15. Name the salt with the strongest ionic bond strength:
$\begin{array}{llll} & \mathrm{MgBr}_{2} & \mathrm{CaCl}_{2} & \mathrm{MgCl}_{2}\end{array} \mathrm{CaBr}_{2}$
a. calcium bromide
b. calcium dibromide
c. magnesium chloride
d. magnesium dichloride
e. magnesium dibromide
f. calcium dichloride
16. Chromium(III) and sulfide (S^{2-}) form an ionic bond. What is the formula for the ionic compound?
a. $\mathrm{Cr}_{2} \mathrm{~S}_{3}$
b. CrS
c. CrS_{3}
d. $\mathrm{Cr}_{3} \mathrm{~S}_{2}$
e. $\mathrm{Cr}_{2} \mathrm{~S}$
17. What is the ionic compound formed between Na and O ?
a. $\mathrm{Na}_{2} \mathrm{O}$
b. NaO_{2}
c. NaO
d. $\mathrm{Na}_{2} \mathrm{O}_{3}$
e. $\mathrm{Na}_{3} \mathrm{O}_{2}$
18. Identify the set that contains ONLY ionic compounds.
a. $\mathrm{CaCl}_{2}, \mathrm{HI}, \mathrm{H}_{2} \mathrm{O}$
b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{CH}_{4}$
c. $\mathrm{CuCl}_{2}, \mathrm{NaCl}, \mathrm{HClO}_{3}$
d. $\mathrm{HCl}, \mathrm{AgCl}, \mathrm{Al}_{2} \mathrm{O}_{3}$
e. $\mathrm{NaBr}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{CaCl}_{2}$
19. Carbon and oxygen form a polar covalent bond. Which of the following statements accurately uses the periodic table trends to explain why this type of bond forms?
a. Oxygen has a greater electronegativity than carbon, which pulls the shared electrons closer to oxygen.
b. Oxygen has a greater ionization energy than carbon, which transfers electrons from carbon to oxygen.
c. Carbon has a greater electronegativity than oxygen, which pushes the shared electrons closer to oxygen.
d. Carbon has a smaller radius than oxygen, which causes the electrons to be shared between the two atoms.
e. Oxygen and carbon have similar electronegativities, causing the electrons to be shared equally between the two atoms.
