
 

GENERAL CHEMISTRY SECTION I: ATOMIC THEORY 
 

LECTURE 1: WAVE-PARTICLE DUALITY OF LIGHT 
 
Time out for a first lesson on active learning. Most people make a cursory glance at an outline or summary and head 
immediately for the meat of the material. This is a really dumb and lazy idea. Instead, think how much better a context 
for the material you’d create if you started by memorizing the summary. For example, see if you can describe out loud 
to yourself the material in the outline below. After all, you will see me do it to start each class, and it’s the main reason 
I don’t really need to look at my notes during lecture – I have already proven to myself that I know what I will be talking 
about. 
 

Chapter Summary 
 

For any general chemistry course taught with an “atoms up” approach, an overview of the first chapter requires an 
argument for how light interacting with matter paved the way for a quantum mechanical revolution, which 
ultimately revealed the electronic configuration of atoms. Here is a summary of the argument: 
 

• The best way to interrogate atomic and subatomic particles is with electromagnetic radiation (i.e., light; 
abbreviated “EMR”). So it’s important to understand its properties, like wavelength and frequency. 

• The classical interpretation of light is as a wave – but that idea breaks down in explanations of blackbodies and the 
photoelectric effect. So Planck and Einstein redefined light as a particle with discrete energies. 

• DeBroglie says that there is a duality (wave and particle) to both light and matter. 
• The uncertainty principle provides a lower bound for measurements of uncertainty when answering the 

question, where are electrons located in an atom at a given point in time? 
• Schrödinger develops quantum mechanics so that he can identify the wave functions that describe physical 

systems, like the particle in a box. 
• Balmer and Rydberg see discrete lines in atomic spectra. Schrödinger explains those with quantum mechanics. 
• Using an appropriate potential energy function, the quantum number describing size of atoms, n, generates correct 

energy levels. 
• Two more quantum numbers, ℓ and mℓ, explain orientation and shape of the orbits formed by electrons. 
• A final quantum number, ms, explains the discrete nature of an electron’s spin. 
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ELECTROMAGNETIC RADIATION: CHARACTERISTICS 
 
We are interested in electromagnetic radiation because it’s used to probe the molecular, atomic, and subatomic nature of 
matter. Note how different light energies promote different kinds of motion in atoms and molecules: 
 

 
EMR characteristics: EMR radiation is classified by either wavelength (λ; “lambda”) or frequency (υ; “nu”), and these 
are inversely related to each other through the constant, c, which is the speed of light. 

 

 

c = λυ 
λ = wavelength (length, from meters to picometers) 
υ = frequency in Hz (sec-1) 
c = speed of light = 3.0 x 108 m/s 

 
 

64

64



 

Example: Calculate the wavelength of light from traffic signals (in nm). 

 

Solution: 

λ =
3×108ms
5.75×1014Hz

= 5.22×10−7m
  

and  (5.22×10−7m) (1×10
9nm)

1m
= 522nm  

 Similarly: 

    5.22x1014 Hz  582 nm and     4.27x1014 Hz  702 nm 
 

Sensible? – Yes, since c = λν, it makes sense that as υ decreases, λ increases. 
 
 
Note the wide range of wavelengths in the EMR spectrum that are 
important to chemists, due to their interactions with matter. Spectroscopy 
– the measurement of energy changes resulting from light’s 
interaction with 
matter – is a very 
useful investigative 
tool. For example, 
state troopers use it 
to find out your 
friend’s blood 
alcohol content, and 
the doctor uses it to 
perform an MRI. 

Pertinent Data Equations Constants & Conversions 

Green 5.75 x 1014 Hz υ  = c/λ c = 3.0 x 108 m/s 

Yellow 5.15 x 1014 Hz λ = c/υ 1 m = 109 nm 

Red 4.27 x 1014 Hz   

65

65



 

 
So why does EMR interact with matter? Think of it as two oscillators interacting constructively or destructively, much 
like the way you push a child on a swing constructively to go higher, or destructively to stop. 
 
An example of this is a water molecule in your microwave. Here are the oscillators in our analogy: 

• Oscillator 1 – the particle’s motion, such as the spin of the water molecule. 
• Oscillator 2 – the EMR, such as the frequency of the microwaves. 

Then, when the microwave is tuned to the precise frequency at which it makes water spin, it causes an increase in the 
amplitude of the waves. 
 
Spectroscopists typically monitor these changes in amplitude to know that something is going on. 
 

 

Waves interacting constructively. 

Waves interacting destructively. 

66

66



 

DISCOVERING THE DUAL NATURE OF EMR 
 

Everyone knows that we can think of EMR as a wave. Many wave-like properties of light are demonstrated by phenomena 
such as diffraction, dispersion, and the polarization of light. Just pick up a CD or DVD and watch the rainbow of colors 
flashing off the gratings (grooves), and think: waves. 
 
Sadly, at the turn of the 19th century, several observations of light’s behavior failed to be explained by classical 
physics, indicating that other explanations about EMR’s properties were needed. Consider the following: 

• Blackbody radiation — wave theory suggests that blackbodies (heat sources) transmit radiation at all υ. They 
don’t. 

• Photoelectric effect — wave theory says no energy minima for ejecting electrons from metal surfaces. There is. 
In an attempt to resolve this conflict, Planck and Einstein formed new theories about the nature of EMR. These theories 
suggested that light could be said to have a particle nature, with discrete energy levels. 

 

BLACKBODY RADIATORS 
 
By definition, blackbody radiators don’t favor one wavelength of EMR over another. Was that confirmed experimentally? 

1. In 1879, Stefan showed that the EMR’s intensity (I) is directly related to the fourth 
power of temperature. 

I  = (Power / Area) = (W / m2) = cT4, where c = 5.7 x 10-8 (W / (m2K4) 

2. In 1893, Wien demonstrated the inverse relationship of temperature (T) and 
maximum wavelength (λmax) (as T increases, the blackbody shifts to higher υ). 
This is expressed in Wien’s Law: 

Tλmax =  c2 / 5,  where c2 = 1.44 x 10-2 km 

This is why you see the color change on a heating element as its temperature 
increases.
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Example: Calculate the temperature in deep space if the maximum λ for EMR is 1.05 mm. 
Pertinent Data Equations Constants & Conversions 
λmax = 1.05 mm Wien’s Law ! Tλmax = c2/5 c2 = 1.44 x 102 km 

Solution:  
 
 

Sensible? – Yes, deep space is cold, as there are few particles to collide and transfer energy. 

While classical mechanics was still accepted, experiments on blackbodies were conducted, and their results posed a 
problem: from the classical perspective, blackbodies should have no minimum or maximum EMR frequencies able to be 
absorbed and emitted. In other words, classical mechanics predicted that blackbodies could absorb and emit EMR of 
infinite frequencies. 
 
But experiments showed that there is a maximum frequency of EMR that blackbodies can absorb and emit – in the 
ultraviolet region. How could this be explained? The answer came along with Planck’s development of a particle model 
for EMR, which was a decidedly non-classical model for radiation. The idea of a discrete packet of energy allowed Planck 
to argue that, in blackbody radiators at low temperatures, there is insufficient energy to emit light at ultraviolet and 
higher frequencies (the frequencies with the highest energies). 
Planck described the concept of a photon as a discrete packet of energy, with its energy dependent upon frequency. 

E = hυ 
υ = EMR frequency 
h = Planck’s constant = 6.6 x 10-34 Js 

 
 

Example: What is E for a yellow photon with ν = 5.2 x 1014 Hz?  
 
 
 

Solution: 
E = hν = (6.626 x 10-34 Js) (5.2 x 1014 sec-1) = 3.4 x 10-19 J 
Sensible? – Yes, one photon shouldn’t produce much energy, so the answer must be a very small number. 

Pertinent Data Equations Constants & Conversions 

5.2 x 1014 Hz E = hν h = 6.626 x 10-34 Js 

T =
c2
5λmax

=
1.44×10−2km

(5)(1.05mm)(1m 1000mm)
= 2.7K
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THE PHOTOELECTRIC EFFECT 
 
The photoelectric effect states that if you shine light on a metal, at a certain υ, electrons are emitted.  
 
A classical model for the photoelectric effect could not be verified experimentally – it predicts that there is no relationship 
between the intensity of the incident light and the energy of the expelled electrons. 
 
In his Nobel Prize winning work, Einstein explained the inconsistencies of classical theory, using the particle model for 
EMR: quantized photons must have a minimum ejection energy, Φ (“phi”), in order for electrons to be ejected with a 
kinetic energy proportional to υ. 

Ekin = ½ mv2 = hυ – Φ 
 
 
 
 
 
 

 
 
The figure on the right shows how a minimum threshold frequency (or energy) is needed to get an electron to eject. Just 
as with blackbody radiators, the particle model was used to explain an experimental observation that had contradicted 
classical mechanics’ prediction about the photoelectric effect. 
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It was clear that a new theory about EMR needed to be developed – one that could account for light’s wave-like and 
particle-like behavior.  This property of EMR came to be known as the wave-particle duality of light. 
 
 

ALL EQUATIONS 
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λ = wavelength 
m = mass 
v = velocity 
mv = p = momentum 

LECTURE 2: THE DEVELOPMENT OF QUANTUM MECHANICS 
 

Chapter Summary 
 

Many important theoretical and experimental results would follow from the discovery of the particle nature of light. 
 

• Matter also has a wave-particle duality.  Turn about is fair play as deBroglie showed that matter, even people, have 
a wave-like nature.  The deBroglie wave equation for matter is:  “λ = h / p”, where “p = mv”, and m = momentum. 
(Recall: λ = wavelength, m = mass, v = velocity, and h = Planck’s constant (6.6 x 10-34 Js)).  From the wave equation, 
note the inverse relationship of m and λ.  Which means that a 1g mass (heavy) moving at 1 m/s has λ = 7 x 10-33 m, 
whereas a proton (very, very lightweight) moving at the speed of light has λ = 1 x 10-11 m. 

• The uncertainty principle says that if photons are waves, then – in the same way we can’t pinpoint the location of a 
wave after we pluck a guitar string – we can’t say where a photon is (or an e-, for that matter). 

• The discrete lines in atomic spectra suggest a particle-nature to EMR: the lines correspond to the transition of an 
emitted photon between an atom’s energy levels; in other words, they show an electron moving between upper and 
lower stability regions of an atom. 

• Schrödinger and Heisenberg develop quantum mechanics, in order to explain the behavior of the fundamental 
particles that make up the atom.  By describing electronic distributions around the nucleus, it becomes possible to 
develop the modern theory of chemical bonding. 

 
 

THE WAVE-PARTICLE DUALITY OF MATTER 
 
The last chapter talked about how light behaves as both a particle and a wave, but interestingly, light is not alone in that: 
matter has the same duality. So if matter has a wave-particle duality, shouldn’t there be examples of matter exhibiting 
wave-like nature?  DeBroglie helped solve this question when  
he generated an equation to predict the sign of matter’s waves: 
 
 

 
 

 

λ =
h
mv

=
h
p
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As expected, there is an inverse relationship between mass and wavelength.  What are some examples of magnitudes in 
the relationship between λ and m? 

 
• An e- with mass of 10-31 kg can generate nm (nanometer; 10-9 m) waves 
• A proton with mass of 10-27 kg can generate pm (picometer; 10-12 m) waves 
• A 1 g marble can generate 10-31 m waves 

 
So only atomic particles generate appreciable, detectable waves. 
 
DeBroglie’s theory of the wave-particle duality of matter was put to the test in 1925 by 
Davisson and Germer. The figure to the right shows what they found – a diffraction 
pattern from electrons. Diffraction is solely a wave phenomenon, but this experiment 
showed that electrons can do it, too. 
 
In other words, an experimental success proved that deBroglie was right!          
After this discovery, electron diffraction became an extraordinary tool in analytical 
measurements of molecules. 
 
 
 

THE UNCERTAINTY PRINCIPLE 
 

The wave-particle duality of both EMR and matter brought an end to the idea that classical physics could be used to 
precisely identify trajectories or locations of electrons. 
 
Consider these notions: 

• Where is a wave? 
! Pluck a guitar string. Where is the wave it makes? – Its location is not well identified. 

• What about the continuum of mass and energy? 
! Classical physics predicted that, on the atomic level, matter is discrete (i.e., behaves only as a particle). – This 

turned out not to be the case, as shown by the discovery of matter’s wave-particle duality. 
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Interestingly, it turns out that there are complementary pairs of physical parameters that allow us to quantify 
uncertainty. Here is an equation of a famous complementary pair from quantum mechanics: 

!
2
1

≥ΔΔ xp      where ∆p = momentum and ∆x = location 

(These variables are the complementary pair.) 

(Side note about the constant Js – this is simply an adaptation of Planck’s constant (h) – it’s h 
divided by 2π.) 
 
Another famous one in spectroscopy is: 

!
2
1

≥ΔΔ tv        where ∆v = frequency and ∆t = time 

 
 
 

WAVE FUNCTIONS AND ENERGY LEVELS 
 
Schrödinger decided it would be a good idea to develop a method for generating wave functions. This was the beginning of 
quantum mechanics. 
 

ψ   =   psi   =   is the wave function he wanted to identify. 
 
The reason to bother with ψ: 

 
ψ2    =  psi squared  =  yields the probability that a particle will be in a certain area (volume) of an atom. 

 

Says that the 
longer you look at 
something, the 
narrower (more 
defined) the peak. 

341005.1
2

−×≡=
π
h

!

73

73



Potential energy function 

 
To do this, Schrödinger’s method was to generate a differential equation: 
 

Ψ=Ψ+
Ψ

− ExV
dx
d

m
)(

2 2

22!
 

 
 
 
 
 

 
 

PARTICLE IN A BOX: SOLVED BY QUANTUM MECHANICS 
 
As a first application of the Schrödinger equation, consider the hypothetical situation of a particle in a box: imagine having 
a two-dimensional box with an electron (or proton) in it. Everywhere in the box, the potential is V(x) = 0 (i.e., no potential 
energy). Here’s a depiction: 

 
 
 

System energy 2nd derivative of ψ 

Taking a differential equations 
course would let you solve this, 
a great reason to become an 
engineer! 
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Without potential energy, Schrödinger’s equation can be simplified: 

 

 
 

Now we must solve the equation to find ψ. 
 
To better understand the particle in a box scenario, think of a model system of a standing wave in physics – this will 
represent the particle moving between sides of the box. One example of this is a plucked guitar string: 

 

We need the wave to start and end on the horizontal line 
on both sides of the box. Note that there are only specific 
λ’s that make that happen. These particular λ’s are 
functions of L, the length of the box, just like standing 
waves in physics. 

Ψ=
Ψ

− E
dx
d

m 2

22

2
!
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Just as in physics, solving a standing wave requires the wave function, and we’ll use it the same way for particle in a box: 

!
"
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where  n = 1, 2, … 

And using previous equations to find Ek: 
 

 

Note that half-integers for λ also work:        λ = !!!  

 
So, combining the last two equations: 

 
Now we have multiple equations that give us different ways to solve for a particle in a box: 
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8mL
hnE =     where n = 1, 2, … and  

 

What do we see from this? 
• E can’t be zero, which makes sense. – The uncertainty principle doesn’t permit a particle to lose all its energy and 

become fixed in space. 
• As L, length of box, increases, ∆E gets smaller. – This is why a macroscopic L (i.e., we can see it) has energy levels 

that are too small to distinguish. 
• We have quantized energy levels! (n = 1, 2, 3, …) – And this was done using a classical physics model of a 

standing wave. 
• What made the quantized levels? Boundary conditions. – At the edges of the box, the fixed points (represented by 

the horizontal line in our model system) determine which ψ are possible.  

With these equations, we can find the ∆E between energy levels 1 and 2 by sticking in n = 2 and n = 1, getting E for 
each, and subtracting the 2 E’s. 

Recall: all kinetic E – 
no potential E in box. 
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ATOMIC SPECTRA AND ENERGY LEVELS 
 
As if blackbodies and photoelectric effects 
weren’t bad enough for classical physics, some 
school teacher named Balmer started electrocuting 
gases. The emission spectra he saw were not 
continuous, but rather discrete lines: 
 
 
 
 
 
 

 
 
 

A guy named Rydberg then came up with an empirical equation to describe the separation in frequency between the lines: 

!!
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 with 15103.3 ×=R Hz 

Believe it or not, he decided the constant (R) should be the first letter of his last name! 
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Rydberg’s equation  allows a quick calculation of discrete values of E, v, or λ for an electron. The 

whole reason we’re interested in ν is because it tells us the region of the EMR spectrum (IR vs. visible vs. UV) into which 
an emission line will fall. To do this, the electron’s starting (upper) and ending (lower) energy levels must be known: 

 

nℓ = the lower energy level of the electron  nu = the upper energy level of the electron 
 

If nℓ is n=1, the emission lines show up in the UV region (Lyman series). 
If nℓ is n=2, the emission lines show up in the visible region (Balmer series). 

If nℓ is n=3, the emission lines show up in the IR region (Paschen series). 

Important note: only the nℓ (lower energy level) matters in determining the EMR region where emission lines fall. 

!!
"

#
$$
%

&
−= 22

l

11

unn
Rv

78

78



PRINCIPAL QUANTUM NUMBER (n): ENERGY LEVEL AND DISTANCE FROM NUCLEUS 
 
The principal quantum number, n, describes both the energy level of an electron and its distance from the atom’s 
nucleus. 
 
What a great chance for Schrödinger to test his equation! He could try to mimic what Balmer and Rydberg saw. The test: 

can quantum mechanics yield !
"

#
$
%

&×= 2
15 1103.3
n

v ? 

To find out, he had to solve: with V(x) for an H atom, which is:  (with r = radius 
of electron’s distance, and εο = vacuum permittivity). 

 
 
 
And the solution is…      with  Hz 
 
 
So… Schrödinger did it! He generated the same solution with his equation that Rydberg had experimentally. Therefore, n 
turns out to be the principal quantum number and tells us the distance of electrons from the nucleus. 
 

2n
hREn =

Ψ=Ψ+
Ψ

− ExV
dx
d

m
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LECTURE 3: ATOMIC ORBITALS AND FINDING THE ELECTRONS 
 

In one sentence I will tell you the most important idea in this lecture: 
Wave equation solutions generate atomic orbitals that define the electron distribution around an atom. 

 

SPHERICAL COORDINATES 
 
To start, we need to simplify the math by switching to spherical polar coordinates (everything = spherical; needed for 3D 
spaces) rather than Cartesian coordinates (everything = at right angles; used for 2D spaces).  So the wave equations 
generated will now be of the form ψ(r, θ, Φ) = R(r)Y(θ, Φ), where R(r) describes how far out something is on a radial 
trajectory from the nucleus. 

 
 
 
 
 
 
 
 
 
 
 
Now that we are extended radially on ψ, we need to ask where we are on the sphere carved out 
by R(r). Think of blowing up a balloon and asking what is going on at the surface of each new 
R(r).  To cover the entire surface at projection R(r), we need two angles, θ (“theta”) and Φ 
(“phi”), that get us around the sphere in a manner similar to knowing the latitude and longitude 
on the earth. 

 
These two angles yield Y(θ, Φ), which is the angular wave function.  
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A FIRST SOLUTION: GENERATING THE “1S” ORBITAL 
 
So what answers did Schrödinger get for ψ(r, θ, Φ)? He found that it depended on four quantum numbers that bounded 
the system: 

n, ℓ, mℓ and ms 
 
Recall from last chapter that n is the principal quantum number, and describes an electron’s energy level and distance 
from the nucleus. We will learn about the other three quantum numbers in this chapter. 
 
So, for example, when Schrödinger used n = 1 and ℓ = 0 in his equation, his solution was: 

R(r) = 2(Z/a0)1/2*e-Zr/a0  and Y(θ, Φ) = (1/4π)1/2 

This is the wave function for a ground state electron in a “1s orbital” and has the famous spherical shape that was 
described in the Bohr atom and in elementary school Styrofoam models across the world: 
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ANGULAR MOMENTUM HAPPENS 
 
Things get a lot more complicated for ψ mathematically at even the next principal energy level, n = 2, as shown in the table 
below.  Specifically, note that when ℓ = 0, there was no θ or Φ component; however, when ℓ = 1, there is a Y(θ, Φ) 
term (in the form of “sinθcosΦ”).  Y(θ, Φ) describes the angular momentum of an electron. 
 
When ℓ = 0 !  wave function equation has no Y(θ, Φ) term !  no angular momentum ! We have a simple blob-like 
distribution of aimless electrons in a spherical area (i.e., s orbital). 
 

But when ℓ ≥ 1 !  wave function equation has a Y(θ, Φ) term !  angular momentum is present ! There is the 
acceleration of electrons around a non-spherical area (i.e., p, d, or f orbital). 
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Ψ2 IS WHAT WE’RE AFTER 
 

While it’s great to have a table of wave functions (ψ), what we’re really after is ψ2(r, θ, Φ), which (recall from last 
chapter) tells us the probability of finding an electron in a small volume (ΔV) now defined by r, θ, and Φ. 
 
For example, ψ2(r, θ, Φ) for n = 2, ℓ = 1 generates the famous “p orbital” shape that has a nodal plane at the nucleus: 

 
 

ψ2 tells us the probability of electron density in any volume we carve around the nucleus. Simply stick in ψ2(r, θ, Φ), 
and it tells you the probability of e– density in those volumes.  Thus, for example, with the quantum numbers that describe 
the dumbbell shape above, most of the electron density lies along the y-axis. 

 

Note: in this diagram, the x- 
and y-axes have the same 
orientation as usual (horizontal 
and vertical), but since we’re 
working in three dimensions 
now, there is another axis – the 
z-axis –coming in and out of 
the page perpendicularly. 
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AZIMUTHAL QUANTUM NUMBER (ℓ): DESCRIBES THE SHAPE 
 
The second quantum number, called the azimuthal quantum number, ℓ, tells us the shape of orbitals. Its boundary 
conditions are: 

ℓ = 0, 1, 2, …, (n – 1) 
 
If we calculate ψ2 for various values of ℓ – the orbital angular momentum – we end up with shapes like: 
 

 
 

Note that any time you have ℓ = 0, the orbital looks spherical, and it’s called an “s orbital.” 

Any time you have ℓ = 1, the orbital looks like a dumbbell, and it’s called a “p orbital.” 

Any time you have ℓ = 2, the orbital looks like two overlapping dumbbells, and it’s called a “d orbital.” 
 
These are the famous shapes that we will draw over and over again to represent “where the electrons are” around a nucleus. 
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THIRD QUANTUM NUMBER (mℓ): DESCRIBES THE ORIENTATION 
 

Falling out of the wave equations for ψ(r, θ, Φ) is a third quantum number, mℓ, defining the direction/orientation of an 
orbital. The number of possible directions is determined by the boundary conditions, which are determined by the orbital’s 
azimuthal quantum number (ℓ): 

Given ℓ ! mℓ = -ℓ, …, 0, …, +ℓ 
So when: 

• ℓ = 0 ! There is only one orientation for the s orbital. 
" Because, given ℓ = 0 !  mℓ = 0 
" This makes sense, because a sphere has only one orientation – it looks the same from every direction. 

• ℓ = 1 ! There are three orientations for the p orbital. 
" Because, given ℓ = 1 !  mℓ = -1, 0, 1 
" This makes sense, because a figure a couple pages ago showed a dumbbell-shaped p orbital – you could orient 

that dumbbell along any of the three axes. 
• ℓ = 2 ! There are five orientations for the d orbital. 

"  Because, given ℓ = 2 !  mℓ = -2, -1, 0, 1, 2 

The orientations are not usually easy to define given our unfamiliarity with spherical polar coordinates. But fortunately we 
can easily identify the three directions of p orbitals (produced when ℓ = 1) in Cartesian system: 

 
 
 
 
 
 

 
 

As you look at the five orientations of d orbitals (figure to the right), it is apparent that a lot more is going on 
with those than you will be taught in this course. 
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FOURTH QUANTUM NUMBER (ms): DESCRIBES THE SPIN DIRECTION 
 

The fourth quantum number, ms, describes the direction of spin of an electron.  The really good news is that there are 
only two ways an electron can spin: up and down.  They are assigned the values of plus and minus ½, but we don’t need 
to be concerned with that value – just that there are two directions.  (Note: the fact that ms must be plus or minus ½ is its 
version of boundary conditions.) We can show off these two directions by picturing a cheerleader doing a handstand and 
spinning clockwise, next to Dr. Laude standing upright and spinning counterclockwise – or we can do it with an electron. 
 

 
 

 
ORBITAL SHORTHAND: WRITING POSSIBLE ms CONDITIONS 

 
That last quantum number (ms) is actually the one that gets depicted most often as we start to build up our electron 
configurations.  Rather than the pretty picture above, we simply draw a short horizontal line to represent an orbital.  The 
boundary conditions for the ms quantum number say that there are only two possible electron spins – up and down.  So, 
putting these ideas together, we end up having just three possible allowed states for an orbital: empty, half-filled, and 
filled, as depicted below. 
 

 
    ______   ______   ______ 
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SUMMARY OF BOUNDARY CONDITIONS 
 
The end result of Schrödinger’s solution to the wave equations for a multi-electron system surrounding a positive nucleus is 
the set of four boundary conditions in the table below.  The allowed combinations of these quantum numbers determine the 
distribution of electron density around atoms and – consequently – the basis for the chemical bonding that defines matter in 
the universe.  Learn to apply these boundary conditions and then compare them to what you see in the periodic table.  They 
are the same. Wow. Summarizing: 
 

 
 
And now onto one final idea before we leave quantum mechanics and start building electronic configurations… 
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RADIAL DISTRIBUTION FUNCTION 
 
We’ve been thinking of orbitals as spheres and lobes that have an even distribution of electron density (after all, the orbitals 
we’ve seen were constructed with ψ2, which gives the probability of electrons being in a certain volume of space), but it 
turns out that the e- density is not evenly distributed 
throughout an orbital – within the same orbital, different 
distances from the nucleus can have different e- densities, 
as seen in the p orbital to the right. 
 
 
 
 
 
 
 

 
 

A way to quantify these variations in electron density is with P(r), a radial distribution along a single axis: 
 

P(r) = radial distribution = probability of finding an e- at any location on the sphere carved out along r 
 

Why are P(r) distributions valuable?  Well, they tell us exactly how e- densities vary along radial distributions.  In other 
words, they indicate layers of differing electron density within orbitals. 
                                                       
The P(r) graph to the right shows how, over multiple energy levels (n = 1, 2, 3), radial 
distributions of s orbitals reveal that there are lots of complexities we might not have seen 
otherwise.  For example, the larger s orbitals are not single uniform spheres – they actually 
have waves of increased spherical density extending out from the nucleus. 
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LECTURE 4: HOW TO GENERATE ELECTRONIC CONFIGURATIONS FOR ATOMS AND IONS 
 

We are about to do something incredibly useful – create the electronic configurations for every kind of neutral or 
charged atom we can find in the periodic table.  And we will do it by applying the boundary conditions (quantum rules) 
for n, ℓ, mℓ and mS. We will also need to implement three rules for how one “builds up” the electrons in an atom. 

Important note for this lecture and the rest: another term we use for “orbital” is “subshell.” There is technically a subtle 
difference, but you will hear us use them interchangeably. The same goes for “energy level” and “shell.” 

 

THREE RULES FOR BUILDING UP THE ELECTRONIC CONFIGURATION FOR AN ATOM 
 

Rule 1: Aufbau Principle 

Always fill electron orbits starting with the orbits that are closest to the nucleus. This is the lowest energy or ground 
state configuration. What are the lowest energy orbits? Look at the periodic table. You will see that the n = 1, ℓ = 0 orbit 
(1s)  comes first.  The n = 2, ℓ = 0 orbit (2s) comes second, and the n = 2,  ℓ = 1 orbit (2p) comes third. So according 
to Aufbau, you fill the 1s first, then the 2s, then the 2p, and so on. 

 

Rule 2: Pauli Exclusion Principle 

Never put more than 2 electrons in a single orbit. This is actually the consequence of a larger idea promoted by Pauli 
that no two electrons can have the same four quantum numbers. So, since the mS boundary conditions only allow up 
to two electrons of opposite spin per orbital, you can’t add a third electron to an orbit without it taking on either the +½ or 
-½ spin number, which violates Pauli. And I trust none of us wants to violate Pauli. 
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Rule 3: Hund’s Rule 

The quantum rules produce energy levels (n) that are the same (degenerate) for p and higher orbitals. In building up the 
electrons in an orbit, you must distribute the electrons between degenerate orbitals as much as possible to minimize 
electron repulsion effects. 

 
 

 
 
 

PUTTING IT ALL TOGETHER FOR THE SMALLER ATOMS 
 

Following Aufbau, Hund, and Pauli, we can get under way with building up electronic configurations, beginning with the 
lowest-energy orbitals. We’ll start by placing a single electron into the very first orbital – the one with the lowest energy of 
all orbitals: the 1s orbit, with quantum numbers n = 1 and ℓ = 0. Note that among the various possible charged and 
uncharged atoms, the first and simplest is the hydrogen atom, which has a single electron in an orbit. 
 
The neutral hydrogen electronic configuration: 
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We can now add a second electron and again follow Aufbau, Hund, and Pauli to put another opposite-spin electron in 
that same 1s orbit. A helium atom is the obvious example of this electronic configuration, since it is the neutral atom with 
two electrons. 

 
The neutral helium electronic configuration: 
 

 
 

 
LARGER ATOMS: PAULI AND HUND SPRING TO ACTION 

 
As we add a third electron, we get really excited because we can use one of our rules, the Pauli Exclusion Principle, that 
doesn’t let us put a third electron into a single orbital. So we have to use the next lowest-energy orbital created by the 
boundary conditions. Recall from last chapter: when n = 1, there is no ℓ = 1 (or greater), so for this next step we’re going 
to have to move to n = 2 and ℓ = 0. This is the 2s orbital, which will house our third and fourth electrons. 
 
The neutral lithium electronic configuration: 
 
 
 
 
An obvious progression through the first several neutral atoms will take us into the 2p orbitals, where, for the first time, we 
are dealing with ℓ equal to something other than zero. Recall that when ℓ = 1 we have a p orbital, and there are three 
degenerate (equal) energy levels for it that we can write as three horizontal dashes on the same line. With these three 
lines, we can now apply Hund’s Rule by spreading out the electrons across the equal orbits as much as possible. 

 
The neutral nitrogen electronic configuration: 
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THE IDEA OF FILLED AND HALF-FILLED SHELL STABILITY: A  HARBINGER OF THINGS TO COME 
 

I don’t really know what a harbinger is, but it sounded like a good word to use here. Anyway, the nitrogen example 
above and the neon electronic configuration below are examples of what are called half-filled (three electrons in a six-
electron subshell) and filled (eight electrons in the n = 2 shell) electronic configurations. It will turn out that filled 
and half-filled shells and subshells have added stability. Because of this, all kinds of physical and chemical consequences 
are realized. You know, for example, that neon is unreactive. The reason? It has a filled shell configuration. There is 
much more to come on this concept, since it is at the root of just about everything in this course. 
 
The neutral neon electronic configuration – a VERY stable atom: 
 
 
 
 
 
I don’t feel like doing this “building up” routine for 100 atoms. So why don’t you. Meanwhile, some other related concepts. 
 

 
WHAT’S THAT SHORTHAND UNDER THOSE ELECTRONIC CONFIGURATION PICTURES? 

 
Excellent question. Chemists are lazy, and except for organic chemists, we can’t draw very well either. So rather than 
draw all those three-dimensional pictures of ψ2,  or even those orbitals with the up/down arrows, we would rather create 
some line notation that says the same thing. So, very simply, rather than draw this or that to show you two electrons in a 
1s orbital, we would rather simply write “1s2.” Check out all the ways of writing the same thing: 
 
    
 vs. vs. 1s1 

 
 
So when you see line notation like: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p2, it’s just lazy chemists at work.

1s1 
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GETTING LAZIER 
 
Actually, since there is so much repetition to our electronic configurations thanks to the Aufbau Principle, we can even 
decide to substitute chunks of filled orbitals with noble gas symbols, like [He] or [Ne]. Thus: 

1s2 = [He] and    1s2 2s2 2p6 = [Ne]         and    1s2 2s2 2p6 3s2 3p6 = [Ar] …and so on. 
 

KNOWING THE SEQUENCE OF ORBITALS 
 

We don’t get to violate Aufbau, which means we have to make sure we use the correct order of increasing energy 
levels.  Is it simply what we get from following the boundary conditions for the quantum numbers? This would be: 

1s      !      2s, 2p      !      3s, 3p, 3d      !      4s, 4p, 4d, 4f      !      …and so on. 
Sadly, no. It’s actually what falls out of the energy calculations from the wave functions. Unfortunately, it’s something of an 
increasingly arbitrary-looking sequence: 

1s      !      2s, 2p      !      3s, 3p      !      4s      !      3d      !      4p      !     …and so on. 
Do we have to memorize this order? No! Why? It is found in the way the periodic table is sequenced (pay attention to the 
light font at the top of each block): 
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CHARGED ATOMS’ CONFIGURATIONS: ONLY THE NUMBER OF ELECTRONS MATTERS 
 
As you will soon come to learn, when drawing electronic configurations, the number of protons in the nucleus is not all 
that important, except in determining the distance from the nucleus to the electrons. But besides that, all that matters is the 
number of electrons. (Flashback to high school: a charged atom is called an ion.) 
 
For example, the ions He+ and C5+ and Po83+ all have one electron, so their electronic configurations will all be the same as: 
 

   !        or, equivalently        !        1s1 

 

How about Si2- and P- and Cl+? Note that each of the three ions has 16 electrons, so they all have the same electronic 
configuration as neutral S: 

S = Si2- = P- = Cl+ = 16e-   !      or, equivalently       !        [Ne] 3s2 3p4 

 

What are the electronic configurations for Bi, Tl2- and Po+? In each case there are 83 e-. So to write your configuration in 
shorthand, find the highest noble gas with fewer e- than your atom or ion – [Xe] in this case –, and then, for the remaining e- 
needed to reach the total of 83, put them in orbitals according to our three rules. 

Bi electronic configuration = [Xe] 6s2 4f14 5d10 6p3 

 
You can now create electronic configurations for charged and neutral atoms. Congratulations. 

 
 
 
 
As we finish the first four lectures, a great thing to remember amidst all this grief is that there is real payoff in 
understanding Wien’s Law, particle in a box, Schrödinger, orbital angular momentum, and radial probability densities. 
Being able to generate electronic configurations just by staring at a periodic table sets the table (no pun intended) for you to 
be able to do the most important thing in all of chemistry: 

Create bonds between atoms. 
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LECTURE 5: PERIODIC TRENDS EXPLAINED BY EFFECTIVE NUCLEAR CHARGE 
 

Chapter Summary 
 

The periodic table was created as a consequence of the boundary conditions imposed by the quantum mechanical 
solutions to Schrödinger’s wave equations for multi-electron systems. What we will learn in this lecture is that, in defining 
the properties of atoms in the table, there will turn out to be periodic trends that go along with those properties. 
Specifically, we will see that as we go across the table from left to right, or down the table from top to bottom, a systematic 
increase or decrease in the quantitative measure of a property is observed. This is good for two reasons: first, allows us to 
cement into place the important ideas that explain the properties; and second, it keeps us from having to do much 
memorization since we can make nice sweeping generalizations. 
 
What are the trends we’ll be able to explain? There are a lot of them. But here are six you will see over the next several 
lectures:

• Atomic radii 
• Ionization energy 
• Electron affinity 

• Metallic character 
• Ionic radii 
• Electronegativity

 
And what are the two big ideas that explain the trends for these six properties? They are the titles of the next two lectures: 
 
Rule 1:  Effective nuclear charge (ENC) will explain the relative size of atoms, as well as electrons’ interest in them. As 
will be shown, for example, as ENC↑, size↓, and as ENC↓, size↑. A similar trend can be defined for how much an atom 
wants an electron.  ENC arguments are the most important arguments in explaining the overall trends in the periodic table. 
 
Rule 2:  Filled and half-filled shells have additional stability. As mentioned when drawing the electronic configurations 
of atoms, whenever a filled shell or half-filled shell can be created, it will have more stability than expected by our 
ENC arguments.  Filled-shell stability, for example, is the root of the idea behind the octet rule in explaining chemical 
bonds.  We will also see it impact the fine structure in many of our trends, such as creating exceptions to the Aufbau 
principle for trends for ionization energy and electron affinity.
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THE MULTI-ELECTRON SCHRÖDINGER EQUATION 
 
Recall that when we had a single e-

 (and nucleus), there was a simple potential energy term to stick into the Schrödinger 
equation: 

When there is one e-  !     !  which yields the solution  ! 
 

But what happens with more than one e-? Things quickly get more complicated: we have to account for the electrons repulsing 
each other, so, in addition to the attraction term, a repulsion term must be added to the equation: 

When there is more than one e-  !   
 
 
 
 
The key thing to note is that in addition to the simple attractions between protons in the nucleus and each electron, there are 
repulsions between electrons. This repulsive effect – called electron shielding – has a profound implication in that it 
keeps atom sizes from getting smaller and smaller as the number of protons increases.  We’d live in a very different 
world if an atom with 100 protons was smaller than an atom with one proton just because attractive forces ruled everything. 
 
 

SHIELDING AND EFFECTIVE NUCLEAR CHARGE 
 
The calculation of V(r) to determine the extent of repulsion is not something we’ll bother with in this course, so we’ll 
simplify it and make a nice freshman-chemistry definition of shielding: a singly-charged electron has just as much 
repulsive effect as a singly-charged proton has an attractive effect. 
 
Let’s put this into context. For innermost-shell electrons (n = 1; max. of two e-), nothing stands between them and the 
protons in the nucleus, so their attractive forces are in full effect. However, the same cannot be said about electrons in any 
shell behind that innermost shell. This is because electrons closer to the nucleus interfere (or, shield) the attractive forces 
between more distant electrons and the nucleus. In other words, all electrons are (obviously) attracted to the nucleus, but 
electrons in n > 1 shells are also repulsed by the electrons standing between themselves and the nucleus, and the ultimate 
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result is that their attraction to the nucleus is diminished.  

While this argument is certainly an oversimplification, it is remarkably useful in providing a semi-quantitative 
measure of shielding. The equation below determines the effective nuclear charge: the nucleus’ pull on its electrons, 
taking into account any attractions weakened by shielding. As mentioned before, ENC explains all of the trends in the 
periodic table, so be able to do this calculation: 
 

ENC = effective nuclear charge = (# of protons in nucleus)  –  (# of shielding inner-shell electrons) 
 
 

ENC CALCULATIONS ANALOGY: GETTING GOOD SEATS AT A CONCERT 
 
A better understanding of ENC might come from creating an analogy to attending a concert. The protons are the band, and 
the people in the audience are the electrons.  Which electrons get to see the band best (i.e., experience highest ENC)? The 
people in front row, of course – they see all of the show. What about people in back rows? Their views of the stage aren’t as 
good, because people in front of them block – shield – their view. They see less of the show (i.e., experience lower ENC).  
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So let’s imagine a 13-person band (note: this equals 13 protons, which means 13 e-, which equals 13 concert-goers) and 
think about the values of ENC for the first three rows of the theatre. It’s also important to know that this theatre has 2 seats 
in the front row, 8 seats in the second row, and 10 seats in the third row. (The architect was somewhat eccentric.) 

Unless you haven’t been paying attention, you’ll see that I can straighten out the rows in the theatre above, and you’re 
staring at the periodic table – specifically the 13th element, Al: 
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Important note: as we’ve been showing, each shell of an atom has its own ENC; however, when we talk about the ENC of 
an atom (which we’ll be doing from now on), we’re referring to the e-’s in its outermost shell (AKA valence electrons). 

 
ENC TRENDS IN THE TABLE: DOWN AND ACROSS 

 
Now we can see why it is that as we go down the periodic table, electrons are not getting closer to the nucleus.  New 
protons are being added, but there are an equivalent number of electrons to shield them. So ENC doesn’t increase. 
 
But what happens to ENC across the same row? 
 
 
 
 
 
 
 
 
 
 
So going to the right across the row, ENC actually increases. This makes 
sense: moving to the right means getting both a new proton and a new electron, 
but the new electron is a valence electron, which doesn’t count towards 
shielding (because people in your own row can’t shield you). In terms of our 
ENC equation, this means that the left-hand term (# of protons) is increasing, 
while the right-hand term (# of shielding electrons) being subtracted is staying 
the same – this results in an ENC decrease. 
So how well do our pictures correspond with the actual data? Perfectly. Study 
the nice zigzag shape: 
  
Now, what impact do these observations have on the trends in periodicity? 
They determine what our trends will do as we move across and down the periodic table. 
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TRENDS IN SIZE: ATOMIC RADIUS 
 
The trend for atomic radius follows the ENC arguments closely and without exception. The arguments are simple: the 
bigger the ENC, the greater the electrons’ attraction to the nucleus, and the smaller the atom; conversely, the smaller 
the ENC, the smaller the attraction, and the larger the atom. 

 
Atomic radius is easy to understand, and a simple cartoon drawing fits the actual data perfectly:  

 

 
 

TRENDS IN ELECTRONS’ INTEREST: IONIZATION ENERGY AND ELECTRON AFFINITY 
 

What is important to see is that the trend based on ENC is the same as that of atomic radius – larger going up and to the 
right. ENC arguments can also be used to explain the primary trends associated with how easily an electron is removed 
from an atom (ionization energy) and how easily an electron is attracted to an atom (electron affinity). 

 
Ionization Energy: First Ionization Energy: M ! M+ + e- 

Second Ionization Energy: M+ ! M++ + e- 
Electron Affinity (applies to gases only): X(g) + e- ! X(g)

- 
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So what should we expect? 
 
For ionization energy, getting rid of an electron should be easiest when ENC is low.  So IE should be lowest in the lower 
left of the periodic table. 
 

 
For electron affinity, coveting an electron should be greatest when ENC is highest, which is the upper right of the 
periodic table. The trends are generally correct as predicted: 

Sneak peak of upcoming 
lecture: ionization energy vs. 
atomic radius: the trend for 
IE isn’t as smooth as the 
trend for atomic radius. This 
is due to the stability of filled 
and half-filled subshells. 
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“TO THE RIGHT AND UP, TO THE RIGHT AND UP.” 
 
If you’ve ever seen the movie “JFK,” maybe you remember that Kevin Costner kept saying the phrase: “Back and to the 
left... back and to the left... back and to the left,” over and over as proof that there were two gunmen who shot JFK. Most 
of that has faded from my memory, but the cadence he used remains, because it is the same way to remember how ENC is 
related to ALL six trends of interest to us. It is the creation of a diagonal that starts in the lower left-hand corner and 
works its way to the upper right-hand corner. 
 
Summarizing our six trends – all described as they go up and to the right: 

• Atomic radius decreases 
• Electron affinity increases 
• Ionization energy increases 
• Electronegativity increases  
• Metallic character decreases 

 
 
 

Area of highest: 
• ENC 
• Ionization energy 
• Electron affinity 

 

Area of highest: 
• Atomic radius 

 

These trends are 
discussed in the 
next lectures. 
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LECTURE 6: PERIODICITY’S FINE POINTS – FILLED AND HALF-FILLED SHELL STABILITY 
 

Chapter Summary 
 

If ENC was all we needed to explain trends in the periodic table, then life would be easy. But we all know it’s not. And in 
fact, if we scratch too much at the surface of things, we uncover an underbelly that we probably wish we hadn’t seen.  
 
So if we let the surface be the nice smooth trends of ENC and the underbelly be filled and half-filled shell stability, we’re 
staring at the real data for electronic configurations and periodic trends. See, rules like Aufbau and ENC are pretty and give 
us straight lines, but in reality, most of the data has a bunch of bumps in it that create secondary effects we need to explain: 

So what are some of these secondary bumps that need to be explained? 
• Electronic configurations of atoms don’t always follow Aufbau. 

• Example: Cu is s1d10, not s2d9. 
• Electronic configurations of ions don’t always follow Aufbau. 

• Example: Tl3+ is d10, not s2d8. 
• Ionization energy trends are not smooth across a row of the periodic table. 

• Example: IE of O < IE of N. 
• Electron affinity trends not smooth across a row of the periodic table. 

• Example: EA for C is > EA for N. 
The good news is that once we understand the concept behind filled and half-filled shell stability, we can rationalize the 
examples above – and others like them – with confidence. 
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STABLE FILLED AND HALF-FILLED SHELLS 
 

We all know that the noble gas elements (He, Ne, Ar, Kr, Xe) are “stable” – they’re unreactive because they have low-
energy orbitals that don’t like to change. The property they have in common with each other is a filled s or p subshell, 
which puts them at the end of a row on the periodic table. 

Although the noble gases are the most stable group, a few other groups have a similar enhanced stability due to their 
electronic configurations; these groups are considered “islands of stability” in the periodic table, and their common trait is 
a filled or half-filled outer subshell: 

104

104



 

While you examine the periodic table, you should start to see certain groups or columns as being special. In the same way 
you’ll learn to look at the last column of the periodic table – the s2p6 group, or the noble gases – as being special, you will 
learn to look at all groups with electronic configurations of: 

s2  and   p3 and p6   and   d5 and d10 

as being special, too. Not as special as p6, but more special than the other groups. It is these especially stable columns in 
which the glitches of the ENC argument will be found. So it you are working a problem and find yourself in the vicinity of 
one of these groups, pay attention! 

 
 

SHELL STABILITY MESSES WITH ELECTRONIC CONFIGURATION 
 

Case #1: The d4 and d9 columns 
Certainly the most famous example of the ENC argument being messed up by 
increased shell stability is when we use the Aufbau principle to fill an electronic 
configuration. For example, all the d4 and d9 electron configurations change because of 
filled/half-filled shells; in each case, a single electron that originated in the s2 orbital 
gets relocated to the d orbital, converting what had been a d4 or d9 orbital into a new, 
lovable d5 or d10 orbital, all because of the increased stability in filling or half-filling a 
large d subshell. Reasonably, this results in the s2 becoming s1. 
 
Note: this exception applies to both atoms and ions with the same number of electrons.  
 
Examples of this exception: 

• Cr, Mo, W, and ions like Fe2+, Ru2+, and Ir3+ all move an electron from s2 to 
create an s1d5 electronic configuration. 

• Cu, Ag, Au, and ions like Tl2+, Au- all move an electron from s2 to create an s1d10 
electronic configuration. 
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Case #2: Large metals with p1 to p4 valence electrons 
You may or may not have noticed that there are a collection of metals at the bottom right of the periodic table. They aren’t 
the famous transition metals like iron or copper, but they are pretty important and actually possess some pretty remarkable 
properties. They include some of the “softer metals,” like tin, indium, and lead, among others. 
 
The cations of these soft metals want to lose electrons, and the question is: from what subshell are they removed? 
According to Aufbau, they should come from the valence p orbits, but in reality, the subshells for these larger ions are so 
far from the nucleus, that Aufbau’s simple rules about energy fall apart. So the question turns into: should they come from 
an s, or a p, or a d subshell? 
 
The answer? – Remove them from wherever necessary to create a filled d10 orbital as soon as possible. 
 
So we have a new rule: electrons lost from large atoms come off in the following order: 

p first !  s second !  d last 
 
 
Examples of this exception: 

• In+ lost its electron from the 5p orbital, thus making a new configuration of 
[Kr]5s24d10. 
 
 
 

• In3+ lost its three electrons from two different places: the first was  
taken from its 5p orbital, and the second two were taken from the  
5s orbital, so the ion ends up with an electron configuration of [Kr]4d10.  

 
 
 

Remember, all of this is because we love d10!
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SHELL STABILITY MESSES WITH PERIODIC TRENDS 
 

Recall the phrase: “to the right and up.” It suggested that we should see beautifully 
smooth trends that follow ENC, like the atomic radii trend, shown on the right. 

 
 
 
 
 
 
 
 

The reality is that except for atomic radii, this kind of smoothness in the trends just doesn’t happen. Instead we see a lot of 
jaggedness in the pictures of ionization energy and electron affinity. Can we explain this jaggedness? Well since we are in 
the section on shell stability, this had better be the reason. So here’s something exciting to do – try staring really closely at 
the wiggles in the IE and EA data below (some are pointed out): 

What you should notice is that the seemingly random up-and-down areas actually occur around islands of stability – the 
filled and half-filled shells and subshells. 
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In the blow up below of IE data, notice that the group to the right of a stable group is higher in energy (less stable).  

 
Example of ranking ionization energy around an island of stability – comparing C, N, and O: 
 
The famous examples of an IE bump (often found on exams) occur for the stable half-filled p3 subshell.  Consider what is 
going on with electron configuration around p2, p3, and p4, and ask: how would you rank IE for C, N, and O? 
 
The answer is C<O<N — not — C<N<O:  

C is lower than N because N has a higher ENC. 
N is higher than O because its p3 orbital doesn’t want to lose an electron. 

O is lower than N because its p4 orbital wants to become a p3 orbital to offset ENC. 
 
 
Example of ranking electron affinity around an island of stability – comparing C, N, and O: 
 
Famous examples of an EA bump (found on exams) also occur for the stable half-filled p3 subshell.  Consider what is going 
on with electron configurations around p2, p3, and p4, and ask: how would you rank EA for C, N, and O? 
 
The answer is N<C<O — not — C<N<O: 

C has a more positive EA because adding an electron makes a p3 orbital. 
N has a more negative EA because adding an electron makes a p4 orbital. 

O has the most positive EA due to the highest ENC. 
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And if you want to see the numerical proof of these examples, it’s presented below: 
 C N O F 

IE 1090 1400 1310 1680 
EA +122 -7 +141 +328 

As mentioned earlier, the hiccup in the trend is directly attributed to the islands of stability around p3. 
 
 

RANKING THE ISLANDS OF STABILITY 
 

No doubt you will wonder sometimes whether the magnitude of the exceptions’ increased stability is going to matter. Is 
there a way to quantify how much extra stability is realized? Of course – just program a computer with the Schrödinger 
equation. But barring that, can we come up with a ballpark idea of how important the added stability is? Sure. Obviously 
the noble gas configuration is way more stable than anything else. And based on the examples we have seen, the relative 
extent of filled and half-filled shell stability is:  
 

p6    >>>>>>>    d10    >>>>   d5   >   p3   >>   s2 
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