REMEMBER: Bubble in ALL Bubblesheet information!
This includes your first and last name, your UTEID, and your version number.

Please refer to the back of the bubble sheet for more info.

\[\begin{align*}
R &= 8.314 \text{ J/mol} \cdot \text{K} \\
R &= 0.08206 \text{ L atm/mol} \cdot \text{K} \\
R &= 62.36 \text{ L torr/mol} \cdot \text{K} \\
1 \text{ atm} &= 1.01325 \times 10^5 \text{ Pa} \\
1 \text{ atm} &= 760 \text{ torr} \\
1 \text{ atm} &= 14.7 \text{ psi} \\
PV &= nRT \\
q &= m \cdot C_s \cdot \Delta T \\
q &= m \cdot \Delta H_{\text{change}} \\
\ln \left(\frac{P_2}{P_1} \right) &= \frac{\Delta H_{\text{vap}}}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right) \\
\Delta H_{\text{solution}} &= \Delta H_{\text{lattice}} + \Delta H_{\text{hydration}} \\
P_A &= \chi_A \cdot P_A^0 \\
\Delta T_f &= i \cdot K_f \cdot m \\
\Delta T_b &= i \cdot K_b \cdot m \\
\Pi &= i \cdot MRT \\
G &= H - TS \\
\Delta G &= \Delta H - T\Delta S
\end{align*} \]

water data

\[\begin{align*}
K_f &= 1.86 \degree C/m \\
K_b &= 0.512 \degree C/m \\
C_{s,\text{ice}} &= 2.09 \text{ J/g K} \\
C_{s,\text{water}} &= 4.184 \text{ J/g K} \\
C_{s,\text{steam}} &= 2.03 \text{ J/g K} \\
\Delta H_{\text{fus}} &= 334 \text{ J/g} \\
\Delta H_{\text{vap}} &= 2260 \text{ J/g}
\end{align*} \]

NOTE: Please keep your Exam copy intact (all pages still stapled). You must turn in your exam copy, plus your bubble sheet, and any scratch paper.
This print-out should have 25 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

001 4.0 points
What is the molar solubility of Ag₂S? The K_{sp} is 6.3×10^{-51}.

1. 5.8×10^{-18}
2. 6.37×10^{-15}
3. 7.94×10^{-26}
4. 1.16×10^{-17}
5. 2.82×10^{-13}

002 4.0 points
Estimate the enthalpy of vaporization of CCl₄ given that at 25°C and 58°C its vapor pressure is 107 and 405 torr, respectively. Assume that the enthalpy of vaporization is independent of the temperature.

1. 48.6 kJ·mol⁻¹
2. 486 J·mol⁻¹
3. 142 kJ·mol⁻¹
4. 33.1 kJ·mol⁻¹
5. 3.98 kJ·mol⁻¹

003 4.0 points
What mass of ethylene glycol ((CH₂OH)₂ with molecular weight 62 g/mol) must be added to 1.00 L of H₂O (of mass 1 kg) to lower the freezing point to −5°C? K_f H₂O = 1.86°C/m.

1. 66 g
2. 123 g
3. 167 g

004 4.0 points
On a hiking expedition with Bear Grylls, you ‘accidentally’ end up in a huge chasm 2 km below sea level. Bear, being the resourceful TV star that he is, builds a fire and promptly starts to heat some water to cook the local snake for dinner. At what temperature do you expect Bear’s water to boil?

1. Higher than 100°C
2. At 100°C exactly
3. None of these; Bear Grylls eats his food raw!
4. Lower than 100°C

005 4.0 points
Which of the following would raise the vapor pressure of a sample of isopropanol in a closed container?

I) increasing the temperature of the sample
II) decreasing the size of the container
III) adding a non-volatile solute to the liquid

1. II only
2. III only
3. I and III
4. I and II
5. I only
6. II and III
7. I, II and III

006 4.0 points
What is K_{sp} for Ag₃PO₄, if its molar solubility is 2.7×10^{-6} mol/L?

1. 5.3×10^{-23}
2. 4.8×10^{-22}
3. 2.0×10^{-17}
4. 7.3×10^{-12}
5. 5.3×10^{-16}
6. 1.7×10^{-14}
7. 1.4×10^{-21}

007 4.0 points
K_{sp} for CaF$_2$ is 3.9×10^{-11}. Would a precipitate of CaF$_2$ form if Ca(NO$_3$)$_2$ and NaF solutions were mixed such that $[Ca^{2+}] = 2.0 \times 10^{-4}$ M, and $[F^-] = 3.0 \times 10^{-4}$ M?

1. yes, because Q is larger than K_{sp}
2. yes, because Q is smaller than K_{sp}
3. no

008 4.0 points
Which of the following salts would have the greatest molar solubility?

1. CdS $K_{sp} = 3.60 \times 10^{-29}$
2. Al(OH)$_3$ $K_{sp} = 1.90 \times 10^{-33}$
3. PbCrO$_4$ $K_{sp} = 1.77 \times 10^{-14}$
4. Cu$_2$S $K_{sp} = 2.00 \times 10^{-47}$

009 4.0 points
The solubility product constant of Ag$_2$CrO$_4$ is 9.0×10^{-12}. What is the molar solubility of Ag$_2$CrO$_4$ in a solution in which the silver ion concentration is maintained at 2.0×10^{-3} M by addition of AgNO$_3$?

1. 5.6×10^{-7}
2. 1.3×10^{-4}
3. 4.0×10^{-3}

010 4.0 points
Pure water is saturated with PbCl$_2$. In this saturated solution

1. $K_{sp} = [Pb^{2+}]$.
2. $[Pb^{2+}] = [Cl^-]$.
3. $[Pb^{2+}] [Cl^-] = K_{sp}$.
4. $[Pb^{2+}] = 0.5 [Cl^-]$.
5. $2 [Cl^-] = [Pb^{2+}]$.

011 4.0 points
In general, decreasing the temperature makes which phase transitions more likely to occur?

1. evaporation, fusion, sublimation
2. condensation, freezing, deposition
3. sublimation, condensation, freezing
4. evaporation, deposition, freezing
5. condensation, fusion, deposition

012 4.0 points
Water from a local stream is added to one side of the U-tube shown below. Pure water is placed in the tube on the other side of the semipermeable membrane. With the left side open to barometric pressure of 1.0 atm and 1.15 atm applied to the right side, the two liquids do not move.
In which half of the U-tube is the pure water located?

1. B

2. A

3. Not enough information is given.

013 4.0 points
Rank the liquids NH₃, CH₃OH, CH₃CH₂F, CCl₄ by their miscibility in heptane (C₇H₁₆), from most miscible to least.

1. CH₃CH₂F > CH₃OH > CCl₄ > NH₃

2. NH₃ > CH₃OH > CH₃CH₂F > CCl₄

3. CH₃CH₂F > CCl₄ > CH₃OH > NH₃

4. CCl₄ > CH₃CH₂F > CH₃OH > NH₃

5. CCl₄ > CH₃CH₂F > NH₃ > CH₃OH

014 4.0 points
A solution containing all of the solute that a solvent can dissolve at a certain temperature and pressure is called

1. an unsaturated solution.

2. a saturated solution.

3. a concentrated solution.

4. a supersaturated solution.

015 4.0 points
The phase diagram for a pure substance is given below.

The substance is stored in a container at 150 atm at 25°C. Describe what happens if the container is opened at 25°C.

1. The solid in the container sublimes.

2. The vapor in the container escapes.

3. The liquid in the container vaporizes.

4. The solid in the container melts.

5. The liquid in the container freezes.

016 4.0 points
Nitrogen gas, N₂(g), has a certain solubility when dissolved in water. In which of the following cases would the solubility of N₂(g) increase?

I) changing to a less polar solvent
II) increasing the amount of solvent
III) increasing the pressure of N₂(g)

1. II only

2. I and III

3. I only

4. I, II and III

5. I and II

6. III only
7. II and III

017 4.0 points
Theoretically, it would be harder to dissolve (NaCl/Al$_2$S$_3$) in water because the (higher/lower) the charge density, the lower the solubility.

1. NaCl, lower
2. NaCl, higher
3. Al$_2$S$_3$, lower
4. Al$_2$S$_3$, higher

018 4.0 points
The phase diagram for a pure compound is given below.

All of the following could have a similar phase diagram except

1. methanol.
2. carbon dioxide.
3. carbon tetrachloride.
4. water.
5. benzene.

019 4.0 points
Suppose that you wanted to be sure that a metal ion, any metal ion, would dissolve in water.
What salt of the metal ion compound would you choose?

1. the chloride (Cl$^-$) salt of the metal ion
2. the carbonate (CO$_3^{2-}$) salt of the metal ion
3. the hydroxide (OH$^-$) salt of the metal ion
4. the nitrate (NO$_3^-$) salt of the metal ion

020 4.0 points
The vapor pressure of pure CH$_2$Cl$_2$ (with molecular weight 85 g/mol) is 133 torr at 0°C and the vapor pressure of pure CH$_2$Br$_2$ (with molecular weight 174 g/mol) is 11 torr at the same temperature. What is the total vapor pressure at 0°C of a solution prepared from equal masses of these two substances?

1. 44 torr
2. 144 torr
3. 93 torr
4. 72 torr
5. 3.6 torr
6. 105 torr
7. 89 torr
8. 124 torr
9. 7.4 torr

021 4.0 points
Consider a 200 g block of ice at standard pressure. If it is initially at -23 °C and is heated until it is steam at 148 °C, how much total heat was added to the sample of water? Use the following thermodynamic values for your calculation:

$$c_{ice} = 2.09 \text{ J} \cdot \text{g}^{-1} \cdot \text{K}^{-1}$$
\(c_{\text{water}} = 4.184 \, \text{J} \cdot \text{g}^{-1} \cdot \text{K}^{-1} \)
\(c_{\text{steam}} = 2.03 \, \text{J} \cdot \text{g}^{-1} \cdot \text{K}^{-1} \)
\(\Delta H_{\text{vap}} = 2260 \, \text{J} \cdot \text{g}^{-1} \)
\(\Delta H_{\text{fus}} = 334 \, \text{J} \cdot \text{g}^{-1} \)

1. 632 kJ
2. 565 kJ
3. 822 kJ
4. 548 kJ
5. 29.1 kJ

022 4.0 points
Identify the spectator ion(s) in the equation
\(\text{CaCl}_2(\text{aq}) + \text{Na}_2\text{CO}_3(\text{aq}) \rightarrow \text{CaCO}_3(\text{s}) + 2\text{NaCl(} \text{aq}) \).

1. Na\(^+\), CO\(_3\)\(^-\)
2. Ca\(^{2+}\), Cl\(^-\)
3. Ca\(^{2+}\), CO\(_3\)\(^-\)
4. Na\(^+\), Cl\(^-\)

023 4.0 points
\(\Delta G_{\text{vap}}^o \) for \(\text{H}_2\text{O} (\ell) \) at 85°C is \(< 0, = 0, > 0 \) and at 100°C is \(< 0, = 0, > 0 \).

1. \(< 0; < 0 \)
2. \(> 0; = 0 \)
3. \(< 0; = 0 \)
4. \(< 0; > 0 \)
5. \(> 0; > 0 \)

024 4.0 points
Which of the following highly soluble salts would be the most useful for lowering the freezing point of a solution?

1. \(\text{(NH}_4\text{)}_3\text{PO}_4 \)
2. KBr
3. Cs\(_2\)SO\(_4\)
4. Ce\(_2\)(SeO\(_4\))\(_3\)
5. Cs\(_2\)Cr\(_2\)O\(_7\)

025 4.0 points
Assume the molar solubility of silver chromate (Ag\(_2\)CrO\(_4\)) is represented as \(x \). Which of the following expressions correctly expresses the relationship between the molar solubility of silver chromate and the solubility product constant (\(K_{\text{sp}} \)) for this compound?

1. \(K_{\text{sp}} = 2x^3 \)
2. \(K_{\text{sp}} = x^2 \)
3. \(K_{\text{sp}} = 4x^3 \)
4. \(K_{\text{sp}} = 4x^2 \)
5. \(K_{\text{sp}} = 2x^2 \)