Important Message: Please please please remember to CORRECTLY bubble in your name, uteid, and version number for your exam. We are averaging about 20 students who fail to do this. Think of it as the easiest question on the exam. If you get it wrong, you’ll get a zero when we grade it. Be- cause Quest is not that user friendly, it will take at least 24 hours to get your avoidable mistake fixed. It is a huge pain in the ass - know that. Please take the time to bubble in your information carefully. Lets have NO mistakes on this information please. Thank you so much. I’m only putting this plea on this practice exam and not on the real exam. So just remember to do it.
- Dr. McCord

Holt da 6 3 rev 2b

001 10.0 points

Use electron-dot notation to demonstrate the formation of ionic compounds involving the elements Ca and I.

1. \(\overset{\cdot}{Ca}^+ + \cdot I^- : \rightarrow \)
\(\overset{\cdot}{Ca}^3+ + \cdot I^- : \rightarrow \) CaI

2. \(\overset{\cdot}{Ca}^+ + \overset{\cdot}{Ca}^+ + \cdot I^- : \rightarrow \)
\(\overset{\cdot}{Ca}^++ \overset{\cdot}{Ca}^+ + \cdot I^- : \rightarrow \) CaI

3. \(\overset{\cdot}{Ca}^- + \cdot I^- : \rightarrow \)
\(\overset{\cdot}{Ca}^+ + \cdot I^- : \rightarrow \) CaI

4. \(\overset{\cdot}{Ca}^- + \cdot I^- + \cdot I^- + \cdot I^- : \rightarrow \)
\(\overset{\cdot}{Ca}^3+ + \cdot I^- + \cdot I^- + \cdot I^- : \rightarrow \)
\(\overset{\cdot}{Ca}^3+ + \cdot I^- + \cdot I^- + \cdot I^- : \rightarrow \) CaI

5. \(\overset{\cdot}{Ca}^+ + \cdot I^- : \rightarrow \)
\(\overset{\cdot}{Ca}^2+ + \cdot I^- : \rightarrow \) CaI

6. \(\overset{\cdot}{Ca}^- + \cdot I^- + \cdot I^- : \rightarrow \)
\(\overset{\cdot}{Ca}^+ + \cdot I^- + \cdot I^- : \rightarrow \) CaI

7. None of these

8. \(\overset{\cdot}{Ca}^+ + \cdot I^- + \cdot I^- : \rightarrow \)
\(\overset{\cdot}{Ca}^2+ + \cdot I^- : \rightarrow \) CaI

9. \(\overset{\cdot}{Ca}^+ + \cdot I^- : \rightarrow \)
\(\overset{\cdot}{Ca}^3+ + \cdot I^- : \rightarrow \) CaI

10. \(\overset{\cdot}{Ca}^+ + \overset{\cdot}{Ca}^+ : \rightarrow \)
\(\overset{\cdot}{Ca}^2+ + \overset{\cdot}{Ca}^2+ : \rightarrow \) CaI

Mlib 01 2023

002 10.0 points

Choose the pair of names and formulas that do NOT match.

1. \(\text{N}_2\text{O}_5 : \) dinitrogen pentoxide

2. \(\text{As}_4\text{O}_6 : \) tetraarsenic oxide

3. \(\text{SO}_3 : \) sulfur trioxide

4. \(\text{Cl}_2\text{O}_7 : \) dichlorine heptoxide

5. \(\text{NO} : \) nitrogen monoxide

LDE Rank Lattice Energy 004

003 10.0 points

Rank the crystal lattice energy of the salts
\(\text{Al}_2\text{O}_3, \text{CaCl}_2, \text{CaO}, \text{NaF}, \text{Mg}_3(\text{PO}_4)_2 \).
from least to greatest:

1. NaF < CaCl₂ < CaO < Mg₃(PO₄)₂ < Al₂O₃
2. NaF < CaO < CaCl₂ < Mg₃(PO₄)₂ < Al₂O₃
3. CaO < NaF < CaCl₂ < Al₂O₃ < Mg₃(PO₄)₂
4. Mg₃(PO₄)₂ < NaF < CaCl₂ < CaO < Al₂O₃
5. Mg₃(PO₄)₂ < NaF < CaO < CaCl₂ < Al₂O₃

If the interaction energy between a sodium ion and a chloride ion in table salt is 760 kJ/mol, what is the interaction energy between a zinc ion (Zn²⁺) and a sulfide ion (S²⁻) in a hypothetical structure in which the inter-ionic distances are the same as that of NaCl?

1. 1140 kJ/mol
2. 1520 kJ/mol
3. 1410 kJ/mol
4. 3040 kJ/mol
5. 760 kJ/mol

Consider a potential energy diagram for the interaction of a sodium ion (Na⁺) with a chloride ion (Cl⁻). Which of the following statements is/are true?

I) Repulsive forces predominate at very small internuclear distances.
II) The minimum potential energy occurs when attractive forces are greatest.
III) Attractive forces are linearly dependent on the internuclear distance.

Determine the molecular formula for the molecule:

1. C₆H₄Cl
2. C₆H₆
3. C₄H₁₂Cl₂
4. C₆H₆Cl₂
5. C₄H₄Cl₂
6. C₆H₄Cl₂

Consider the labeled bonds in the molecule below and rank them from least to most polar in terms of difference in electronegativity.

\[
\begin{align*}
\text{H} & \quad :F:\text{e} | \text{b} | \\
\text{H} & \quad \text{c} \quad \text{B} \quad \text{a} \quad \text{C} \quad \text{d} \quad \text{C} \quad \text{N}:
\end{align*}
\]

\[
\begin{align*}
\text{:F} & \quad :F: | \text{:O:} \quad :F:
\end{align*}
\]
1. \(c < d < e < b < a\)
2. \(d < c < a < e < b\)
3. \(d < c < e < a < b\)
4. \(a < b < c < d < e\)
5. \(e < b < d < c < a\)

Lewis CO dash

008 10.0 points

Which of the following is the correct Lewis formula for carbon monoxide (CO)?

1. \(\vdash O \equiv \text{C}\)
2. \(\cdot O \text{C} \cdot\)
3. \(O \text{C} \cdot\)
4. \(\vdash O \equiv \text{C}\)
5. \(\cdot O \equiv \text{C}\)
6. \(\cdot O \equiv \text{C}\)
7. \(\vdash O \equiv \text{C}\)
8. \(\cdot O \equiv \text{C}\)
9. \(\cdot O \equiv \text{C}\)
10. \(\vdash O \equiv \text{C}\)

Mlib 03 1055

009 10.0 points

What kind of carbon-carbon bond is in a molecule of ethylene (C\(_2\)H\(_4\))?

1. single
2. ionic
3. triple

Lewis BF3 dash

010 10.0 points

Which of the following is the correct Lewis formula for boron trifluoride (BF\(_3\))?

1. \(\vdash F \equiv B \equiv F\)
2. \(\text{F} \equiv B \equiv F :\)
3. \(\vdash F \equiv B \equiv F\)
4. \(\vdash F \equiv B \equiv F:\)
5. \(\vdash F \equiv B \equiv F:\)
6. \(\vdash F \equiv B \equiv F:\)
7. \(\vdash F \equiv B \equiv F:\)
8. \(\vdash F \equiv B \equiv F:\)
9. \(\vdash F \equiv B \equiv F:\)
10. \[F - B - F \]

: \(F \):

\[.. \]

ChemPrin3e T02 23

011 10.0 points

Draw the Lewis structure of xenon difluoride and give the number of lone pairs of electrons around the central atom.

1. 1
2. 5
3. 2
4. 4
5. 3

LDE Resonant Species 002

012 10.0 points

Which of the following species exhibit resonance/delocalization?

I) HCN
II) \(O_3 \)
III) \(CO_3^{2-} \)

1. I only
2. I, II
3. III only
4. I, II, III
5. II only
6. II, III
7. I, III

ChemPrin3e T03 26

014 10.0 points

Which of the following has bond angles slightly less than 109.5°?

1. \(O_3 \)
2. \(I_3^- \)
3. \(HOCl \)
4. CH$_3^+$
5. NO$_2^-$

Which of the following is planar?
1. NH$_3$
2. H$_3$O$^+$
3. PF$_3$
4. NO$_3^-$
5. SO$_2^{2-}$

What is the shape (molecular geometry) of IF$_4^+$?
1. square planar
2. tetrahedral
3. trigonal bipyramidal
4. T-shaped
5. seesaw

Which of the following is polar?
1. PCl$_5$
2. ICl$_4^-$
3. IF$_5$
4. SF$_6$
5. XeF$_4$

Which of the following statements concerning hybrid orbitals is/are true?
I) Hybrid orbitals are energetically degenerate.
II) Any element can form sp^3d^2 hybrid orbitals.
III) Hybridizing a 2s and a 2p orbital would produce one single sp hybrid orbital.
1. I, II
2. I, II, III
3. II, III
4. III only
5. I only
6. I, III
7. II only

How many different types of sigma (σ) and pi (π) bonds are found in ethanoic acid, CH$_3$COOH? In other words, how many different combinations of atomic orbitals are used when forming the σ bonds in ethanoic acid.
1. 5
2. 4
3. 3
4. 7
5. none of the above
3. 16 σ, 0 π

4. 12 σ, 0 π

5. 12 σ, 4 π

ChemPrin3e 03 76

021 10.0 points

Carbon has a valence of four in nearly all of its compounds and can form chains and rings of C atoms. Consider the propyne structure.

$$\text{H} \quad \text{a} \quad \text{c} \quad \text{H}$$

$$\text{H} \quad \text{C} \quad \text{C} \quad \text{C} \quad \text{H}$$

What hybridizations would you expect for the carbon atoms identified by a, b, and c, respectively?

1. sp^3, sp^2, sp^3

2. sp^2, sp, sp

3. sp^3, sp, sp^3

4. sp^2, sp^2, sp^3

5. sp^3, sp, sp

6. sp^2, sp, sp^2

7. sp^3, sp^3, sp^2

LDE MO Diagram 001

022 10.0 points

Consider the following molecular orbital diagram:

What are the names of the labeled orbitals, a, b, and c, respectively?

1. π_{2p}^*, σ_{2p}^*, σ_{2s}

2. σ_{2p}^*, π_{2p}, σ_{1s}^*

3. σ_{2p}^*, π_{2p}, σ_{2s}

4. σ_{2p}^*, π_{2p}, σ_{2s}^*

5. π_{2p}^*, σ_{2p}, σ_{2s}^*

LDE Bond Order 009

023 10.0 points

All of the species below have the same bond order except for one of them. Which is it?

1. B_2^-

2. H_2^-

3. Ne_2^+

4. H_2^+

5. F_2^-

Msci 09 0116

024 10.0 points

An antibonding orbital is formed when

1. a p_x-orbital overlaps a p_z-orbital.

2. a free electron is present in the molecule.

3. an s-orbital overlaps a p-orbital.
4. None of these is correct.

5. the overlap of the corresponding atomic orbitals leads to destructive interference.

LDE Paramagnetism 004

025 10.0 points

Which of the following species is/are paramagnetic?

I) Li$_2^-$

II) O$_2^-$

III) H$_2^+$

1. I only

2. I, II and III

3. II and III

4. III only

5. II only

6. I and III

7. I and II