GOOD TeX Coding

TeX code render
$\Delta G = \Delta H - T\Delta S$
put whole equations between just 2 $'s
\(\Delta G = \Delta H - T\Delta S \)
this is all math type
$q_p = n C_{\rm m} \Delta T$ \(q_{\rm p} = n C_{\rm m} \Delta T\)
H$_2$O(g) \({\rm H}_2{\rm O(g)} \)
phase is plain text
${\rm {1\over 2}H_2 + {1\over 2}F_2 \rightarrow HF} $ \({\rm {1\over 2}H_2 + {1\over 2}F_2 \rightarrow HF} \)
$\Delta H_{\rm f}$ \(\Delta H_{\rm f} \)
$\Delta G^\circ_{\rm f}$ \(\Delta G^\circ_{\rm f} \)
${\rm 2NO(g) \rightleftharpoons N_2O_4(g)$
note the "equilibrium" arrow
\({\rm 2NO(g) \rightleftharpoons N_2O_4(g)} \)
pH = p$K_{\rm a} + \log\left({C_{\rm A-}\over C_{\rm HA}}\right)$
note the log term and the big parentheses
\({\rm pH = p}K_{\rm a} + \log\left({C_{\rm A-}\over C_{\rm HA}}\right) \)

BAD TeX Coding

TeX code render
$\Delta$ G = $\Delta$ H - T$\Delta$ S
don't break up the equation
\(\Delta {\rm G =} \Delta {\rm H - T}\Delta {\rm S}\)
this is not math type
q$_p$ = n C$_{\rm m}$ $\Delta$ T \({\rm q}_p{\rm = n C}_m \Delta{\rm T}\)
H$_2$O$_{(g)}$ \({\rm H}_2{\rm O}_{(g)}\)
don't subscript phase
1/2 H$_2$ + 1/2 F$_2$
$\rightarrow$ HF
\({\rm 1/2H}_2{\rm + 1/2F}_2 \rightarrow {\rm HF} \)
$\Delta$H$_f$ \(\Delta{\rm H}_f \)
$\Delta$G$^\circ$$_f$ \(\Delta{\rm G}^\circ_f \)
${\rm 2NO(g) \leftrightharpoons N_2O_4(g)}$
equilibrium arrow is the wrong way
\({\rm 2NO(g) \leftrightharpoons N_2O_4(g)} \)
$pH = pK_a + log\left({C_{A-}\over C_{HA}}\right)$ \(pH = pK_a + log\left({C_{A-}\over C_{HA}}\right) \)
way too much mathtype

Just some more TeX coding for various things...

Sometimes you'd prefer to use a root sign instead of parentheses and a fractional power. How about the 3rd root of 27 equaling 3?

$\root 3 \of {27} = 3$   which gives:   \(\root 3 \of {27} = 3\)

$(27)^{1/3}=3$   which gives:    \((27)^{1/3}=3\)

need bigger/taller parentheses?

$\left({500\over 4}\right)^{1\over 3} = 5$   which gives:    \(\left({500\over 4}\right)^{1\over 3} = 5\)



Solving for molar solubility x for a 1:3 salt like Fe(OH)3.

$x=\root 4 \of {K_{\rm sp}\over 27}$ which gives \(x=\root 4 \of {K_{\rm sp}\over 27}\)


TeX Tables

Tables are complicated and require some higher TeX skill. These do not work with MathJax.

$$\vbox{\offinterlineskip\halign{
\strut\hfil#\enskip\hfil
&\hfil\enskip$#$&$.#$\enskip\hfil&\hfil\enskip$#$&$.#$\enskip\hfil&\hfil\enskip$#$&$.#$\enskip\cr
\noalign{\hrule\smallskip}
\#&\multispan 2\hfil [A]\enskip\hfil&\multispan 2\hfil [B]\enskip\hfil&\multispan 2\hfil rate (M/s)\enskip\hfil\cr
\noalign{\smallskip\hrule\smallskip}
1&0&10 &0&10 &7&5\times 10^{-7}\cr
2&0&20 &0&20 &30&0\times 10^{-7}\cr
3&0&20 &0&40 &60&0\times 10^{-7}\cr
\noalign{\smallskip\hrule}
}}$$

TeX Table Render

The table renders nicely in a TeX document.