## Final Exam

$$
\begin{aligned}
& h=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \\
& c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1} \\
& \mathcal{R}=2.18 \times 10^{-18} \mathrm{~J} \\
& R=0.08206 \mathrm{~L} \mathrm{~atm} / \mathrm{mol} \mathrm{~K} \\
& R=8.314 \mathrm{~J} / \mathrm{mol} \mathrm{~K} \\
& k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \\
& P V=n R T \quad x_{\mathrm{A}}=P_{\mathrm{A}} / P_{\text {total }} \\
& P(V-n b)=n R T \\
& \left(P+a \frac{n^{2}}{V^{2}}\right)(V-n b)=n R T \\
& P_{\text {total }}=P_{\mathrm{A}}+P_{\mathrm{B}}+P_{\mathrm{C}}+\cdots \\
& v_{\mathrm{rms}}=\sqrt{\frac{3 R T}{M}} \quad E_{\mathrm{k}}=U=\frac{3}{2} R T \\
& E=h \nu \quad c=\lambda \cdot \nu \\
& \frac{1}{2} m v^{2}=h \nu-\Phi \\
& \text { Rydberg : } \nu=\mathcal{R}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Delta U=q+w \quad H=U+P V \\
& w=-P \Delta V \quad w=-\Delta n R T \\
& \Delta U=\Delta H-P \Delta V \\
& \Delta U=\Delta H-\Delta n R T \\
& \Delta U=q_{\mathrm{v}}=n C_{\mathrm{v}} \Delta T \\
& \Delta H=q_{\mathrm{p}}=n C_{\mathrm{p}} \Delta T \\
& q=n \cdot \Delta H_{\text {trans }} \\
& q_{\mathrm{sys}}=-q_{\mathrm{cal}} \\
& q_{\mathrm{cal}}=q_{\text {water }}+q_{\text {hardware }} \\
& \Delta S=q_{\mathrm{rev}} / T \quad S=k \ln W \\
& \Delta S=n C_{\mathrm{m}} \ln \left(\frac{T_{2}}{T_{1}}\right) \\
& \Delta H_{\mathrm{rxn}}=\Delta H_{1}+\Delta H_{2}+\Delta H_{3}+\cdots \\
& \Delta H_{\mathrm{rxn}}^{\circ}=\sum n \Delta H_{\mathrm{f}}^{\circ}(\text { prod })-\sum n \Delta H_{\mathrm{f}}^{\circ}(\text { react }) \\
& \Delta H_{\mathrm{rxn}}=\sum B E_{\text {reactants }}-\sum B E_{\mathrm{products}} \\
& \Delta G_{\mathrm{rxn}}^{\circ}=\sum n \Delta G_{\mathrm{f}}^{\circ}(\text { prod })-\sum n \Delta G_{\mathrm{f}}^{\circ}(\text { react }) \\
& \Delta S_{\mathrm{rxn}}^{\circ}=\sum n S^{\circ}(\text { prod })-\sum n S^{\circ}(\text { react }) \\
& G=H-T S \quad \Delta G=\Delta H-T \Delta S \\
& \Delta S_{\text {trans }}=\Delta H_{\text {trans }} / T_{\text {trans }}
\end{aligned}
$$

NOTE: Please keep your Exam copy intact (all pages still stapled). You must turn in your exam copy plus your bubble sheet, and scratch paper.

