HW11 - Second Law & Free Energy

⚠ This is a preview of the published version of the quiz

Started: Jul 1 at 8:12am

Quiz Instructions

Homework 11 - Second Law & Free Energy

Question 1	1 pts
In order for an endothermic reaction to be spontaneous,	
heat must be supplied to the system.	
the entropy increase in the system must be greater than the entropy decrease in the surroundings.	
the entropy increase in the system must equal the entropy decrease in the surroundings.	
ondothermic reactions are never spontaneous.	
onothing special is required; they are always spontaneous.	

Question 2	1 pts
Which one of the following reactions has a positive entropy change?	
\bigcirc H ₂ O (g) \longrightarrow H ₂ O (l)	
\bigcirc N ₂ (g) + 3H ₂ (g) \longrightarrow 2NH ₃ (g)	
$\bigcirc 2SO_2(g) + O_2(g) \longrightarrow 2SO_3(g)$	
$\bigcirc 2NH_4NO_3 (s) \longrightarrow 2N_2 (g) + 4H_2O (g) + O_2 (g)$	
\bigcirc BF ₃ (g) + NH ₃ (g) \longrightarrow F ₃ BNH ₃ (s)	

Question 3	1 pts
Consider the following processes. Which entropy will increase as the process proceeds from left to right? correct answers.	Select all of the
$\square \ H_2O\ (I) \rightarrow H_2O\ (s)$	
\square CaCO ₃ (s) \rightarrow CaO (s) + CO ₂ (g)	
NaCl (s) → Na ⁺ (aq) + Cl ⁻ (aq)	
Question 4	1 pts
What are the values of ΔS for the water, the surroundings, and the universe for the evaporation of water from at 25°C?	om an open pan
opositive, negative	
negative, negative	
opositive, negative, positive	
opositive, negative, zero	
Question 5	1 pts
True/False: For a given transfer of energy, a greater change in entropy occurs when the temperature is hig	h.
False, because as temperature decreases there is a greater change in entropy.	
○ True	
False, because only heat flow affects the change in entropy, not temperature.	
Question 6	1 pts

Which of the following lists phases in order of increasing entropy?

osolid, gas, liquid	
liquid, solid, gas	
gas, liquid, solid	
osolid, liquid, gas	
O liquid, gas, solid	
Question 7	1 pts
$\rm H_2$ burning in $\rm O_2$ to form $\rm H_2O$ (I) is an example of a system where the entropy of the universe $\rm O_2$	decreases.
○ False	
○ True	
H ₂ is not flammable.	
Question 8	1 pts
Consider the following processes of ideal gases. Which of these processes leads to an increa	
Consider the following processes of ideal gases. Which of these processes leads to an increa	
Consider the following processes of ideal gases. Which of these processes leads to an increathe correct answers.	
Consider the following processes of ideal gases. Which of these processes leads to an increathe correct answers. A glass of water loses 100 J of energy reversibly at 30°C.	
Carbon dioxide is allowed to expand isothermally to 10 times its original volume.	1 pts
Consider the following processes of ideal gases. Which of these processes leads to an increathe correct answers. A glass of water loses 100 J of energy reversibly at 30°C. Carbon dioxide is allowed to expand isothermally to 10 times its original volume. Nitrogen gas is compressed isothermally to one half its original volume.	

$ 3O_2(g) \rightarrow 2O_3(g) $	
$\square 2H_2O(g) \rightarrow 2H_2(g) + O_2(g)$	
$\square \ H_2O\ (g) \rightarrow H_2O\ (l)$	
Question 10	1 pts
The temperature of 2.00 mol Ne(g) is increased from 25°C to 200°C at constant press Ne is 20.8 J/K·mol, calculate the change in the entropy of neon. Assume ideal gas before	
○ -19.2 J/K	
○ -7.68 J/K	
○ +7.68 J/K	
O +19.2 J/K	
Question 11	1 pts
The enthalpy of fusion of H_2O (s) at its normal melting point is 6.01 kJ/mol. What is the of water at this temperature?	e entropy change for freezing 1 mole
+20.2 J/mol·K	
+22.0 J/mol·K	
○ -22.0 J/mol·K	
○ -20.2 J/mol·K	
Question 12	1 pts
Calculate the standard reaction entropy for the decomposition of 1 mol calcite to carbo	on dioxide gas and solid calcium
oxide at 25°C.	

 $\label{eq:control_loss} \boxed{} \ 2H_2O\ (I) + O_2\ (g) \rightarrow H_2O_2\ (I)$

Substance		
	S° (J/mol·K)	
CaO (s)	39.75	
CO ₂ (g)	213.74	
CaCO ₃ (s)	92.9	
160.6 J	/mol*K	
266.9	J/mol*K	
160.6 、	J/mol*K	
346.4 J	/mol*K	
Question	13	1 pts
False -	All entropies of fusion are negative. fusion leads to less microstates (degrees of freedom).	
True - fu	usion leads to more microstates (degrees of freedom).	
False -	fusion leads to more microstates (degrees of freedom).	
	usion leads to more microstates (degrees of freedom).	
True - fu	usion leads to less microstates (degrees of freedom).	1 pts
True - fu	usion leads to less microstates (degrees of freedom).	
True - fu	usion leads to less microstates (degrees of freedom).	
True - fu	usion leads to less microstates (degrees of freedom).	
Question System rele 3 J/K	usion leads to less microstates (degrees of freedom).	1 pts

Question 15	1 pts
When a sugar cube dissolves in a cup of coffee (an endothermic process), entropy changes of the sugar plus water, surroundings, and the universe respectively are	, the
negative, positive	
opositive, positive, positive	
opositive, negative	
negative, negative	
None of these are correct.	
Question 16	1 pts
Which substance has the lower molar entropy?	
They are both the same.	
Ne (g) at 298 K and 1.00 atm	
○ Kr (g) at 298 K and 1.00 atm	
There is no way to know.	
Question 17	1 nto
Question 17	1 pts
Calculate the standard entropy of vaporization of ethanol at its boiling point, 352 K. The standard molar enthalpy of vaporization of ethanol at its boiling point is 40.5 kJ/mol.	
○ -115 J/mol·K	
+115 J/mol·K	
○ -40.5 J/mol·K	
+40.5 J/mol·K	

Question 18	1 pts
Consider the following vaporization reaction.	
$Br_2(I) \rightarrow Br_2(g)$	
At a certain pressure, $\Delta H^\circ = 34$ kJ/mol and $\Delta S^\circ = 0.098$ kJ/mol·K. What is the lowest temperature at whic is spontaneous?	th this process
○ 347 K	
○ -347 K	
○ 0.00288 K	
○ 74 K	
Question 19	1 pts
For this problem, you will have to look up ΔH_f° and the S° values from a table. Estimate the minimum temp magnetite can be reduced to iron by graphite. Fe ₃ O ₄ (s) + 2C (s, graphite) \rightarrow 2CO ₂ (g) + 3Fe (s)	perature at which
Magnetite will be reduced by carbon at any temperature.	
○ 787°C	
Magenetite cannot be reduced by carbon at any temperature.	
○ 670°C	
○ 535°C	
Question 20	1 pts
What is the entropy change for the following chemical reaction at at 25°C?	
$C_2H_2(g) + 2H_2(g) \rightarrow C_2H_6(g)$	

C ₂ H ₂ (g)	200.94	226.73				
H ₂ (g)	130.68	0				
C ₂ H ₆ (g)	229.6	-84.68				
102.0	J/mol·K					
290.0 J	l/mol·K					
O 159.3 J	l/mol·K					
-232.7	J/mol·K					
Question	21					1 p
What is the	enthalpy chan	ge for the chemi	al reaction in quest	ion 20?		
-142.05	5 kJ/mol					
	kJ/mol					
-538.14						
-538.14	4 kJ/mol					
-538.14 -311.41	4 kJ/mol					
-538.14 -311.41	4 kJ/mol I kJ/mol kJ/mol					1 p
-538.14 -311.41 311.41	kJ/mol kJ/mol kJ/mol	n free energy for t	e chemical reaction	n in question 20).	1 p
-538.14 -311.41 311.41 Question	kJ/mol kJ/mol kJ/mol	n free energy for t	e chemical reaction	n in question 20).	1 p
-538.14 -311.41 311.41 Question	kJ/mol kJ/mol 22 andard reaction kJ/mol	n free energy for t	e chemical reaction	n in question 20).	1 p

Question 2	23					4
Assuming ΔH	$ extsf{H}^\circ_{ extsf{rxn}}$ and $\Delta extsf{S}^\circ_{ extsf{rxn}}$	are unaffected	oy temperature chanç	es, find the temperate	ure at which ΔG° is zero for the	1 pts
chemical read	ction in questior	າ 20.				
O -1338 K						
O ΔG° will	not equal 0 at	any possible te	mperature.			
○ 1338 K						
1.338 K						
Question 2	24					1 pts
98K?	following unbal $D(g) \rightarrow Al(s) + C(s)$		What is the standard	free energy for the re	eaction of 7.2 moles of $Al_2O_3(s)$	at
	ΔH°_{f} (kJ/mol) S					
Al ₂ O ₃ (s)	-1676.0	50.92				
CO (g)	-110.5	197.6				
Al (s)	0.0	28.3				
CO ₂ (g)	-393.5	213.6				
	kJ					
◯ 5800 kJ						
) ⁵ kJ					
810 kJ						
Question 2	25					1 pts
	normal boiling ·K and 31.4 kJ/			idard entropy and en	thalpy of vaporization of chloro	form
○ 450 K						

335 K 405 K	1 pts
Question 26 Find the standard entropy change for the formation reaction of CO (g) at 298 K. Substance S° (J/mol·K) ΔH° _f (kJ/mol) C (s, graphite) 5.74 0 O ₂ (g) 205.14 0 CO (g) 197.67 -110.53	I pts
Find the standard entropy change for the formation reaction of CO (g) at 298 K.	I pts
Find the standard entropy change for the formation reaction of CO (g) at 298 K.	1 pts
Substance S° (J/mol·K) ΔH° _f (kJ/mol) C (s, graphite) 5.74 0 O ₂ (g) 205.14 0 CO (g) 197.67 -110.53	
C (s, graphite) 5.74 0 O ₂ (g) 205.14 0 CO (g) 197.67 -110.53	
O ₂ (g) 205.14 0 CO (g) 197.67 -110.53	
CO (g) 197.67 -110.53 89.36 J/mol·K	
CO (g) 197.67 -110.53 89.36 J/mol·K	
○ 13.21 J/mol·K	
○ -89.36 J/mol·K	
○ -13.21 J/mol·K	
Question 27	1 pts
What is the standard free energy change for the chemical reaction in question 26?	
26,739.81 kJ/mol	
○ 137.16 kJ/mol	
Question 28	
	1 pts

$AICI_3(g) + O_2(g) \rightarrow AI_2O_3(s) + CIO(g)$		
6		
) 4		
9		
) 1		
uestion 29	1 pts	
Substance \(\Delta G_f \) (kJ/mol)		
+492 kJ/mol rxn		
+700 kJ/mol rxn		
+700 kJ/mol rxn -492 kJ/mol rxn		
	1 pts	
-492 kJ/mol rxn		

It depends o	n the enthalpy cha	nge of the system	1.		
O No					

uestion	31		11
onsider the	following che	mical reaction.	ΔG° for the reaction at 298 K.
O (g) + Cl ₂	$(g) \rightarrow COCl_2$	g)	
Substance	ΔH° _f (kJ/mol)	S° (J/mol·K)	
CO (g)	-110.5	197.6	
Cl ₂ (g)	0	223.0	
COCl ₂ (g)	-223.0	289.2	
-39.3 k			
	kJ/mol		

Question 32 1 pts

Consider the following table that contains an assortment of compounds and their corresponding standard free energies of formation. Which of these liquids are thermodynamically stable? Select all of the correct answers.

Name	Compound	Free Energy (kJ/mol)
Cyclohexane	C ₆ H ₁₂ (I)	6.4
Methanol	CH ₃ OH (I)	-166
Hydrazine	N ₂ H ₄ (I)	149
Hydrogen Peroxide	H ₂ O ₂ (I)	-120
Carbon Disulfide	CS ₂ (I)	65.3

Cyclohexane		
Hydrogen Peroxide		
☐ Hydrazine		
Carbon Disulfide		
Question 33		
auestion 33		1 pts
Ammonia (NH $_3$) gives windex and cat urine its odor. It has a ΔH°_{vap} s the normal boiling point of ammonia?	of 23.35 kJ/mol and a $\Delta \text{S}^\circ_{ ext{vap}}$ of 97.	
Ammonia (NH $_3$) gives windex and cat urine its odor. It has a $\Delta \text{H}^\circ_{ ext{vap}}$	of 23.35 kJ/mol and a ΔS° _{vap} of 97.	
Ammonia (NH $_3$) gives windex and cat urine its odor. It has a ΔH°_{vap} s the normal boiling point of ammonia? $\bigcirc \ 273^\circ C$	of 23.35 kJ/mol and a ΔS° _{vap} of 97.	
Ammonia (NH ₃) gives windex and cat urine its odor. It has a ΔH° _{vap} s the normal boiling point of ammonia? 273°C 238.7°C	of 23.35 kJ/mol and a ΔS° _{vap} of 97.	
Ammonia (NH ₃) gives windex and cat urine its odor. It has a ΔH° _{vap} s the normal boiling point of ammonia? 273°C 238.7°C -33.3°C	of 23.35 kJ/mol and a ΔS° _{vap} of 97.	