HW10 - (replaced) First Law & Calorimetry

This is a preview of the published version of the quiz

Started: Jul 1 at 8:11am

Quiz Instructions

Question 1

Homework 10 - First Law & Calorimetry (attempting to allow up to 5 attempts now)

1 pts

○ 62.47 kJ	
○ 67.79 kJ	
○ 64.21 kJ	
◯ 48.37 kJ	
Question 2	1 pt
	1 pt
Question 2 The definition of internal energy is $\Delta U = q + w$	1 pt
The definition of internal energy is $\Delta U = q + w$	
The definition of internal energy is	

Question 3	1 pts
When 2.00 kJ of energy is transferred as heat to nitrogen in a cylinder fitted with a piston with an external p atm, the nitrogen gas expands from 2.00 to 5.00 L. What is the change in internal energy of this system?	ressure of 2.00
○ +2.61 kJ	
O 0	
○ -0.608 kJ	
○ -2.61 kJ	
○ +1.39 kJ	
Question 4	1 pts
QUESTION 4	
A system had 150 kJ of work done on it and its internal energy increased by 60 kJ. How much energy did to or lose as heat?	he system gain
The system lost 90 kJ of energy as heat.	
The system gained 60 kJ of energy as heat.	
The system lost 210 kJ of energy as heat.	
The system gained 210 kJ of energy as heat.	
The system gained 90 kJ of energy as heat.	
Question 5	1 pts
If a process is carried out at constant pressure and the volume of the system decreases, then ΔV is	
[Select]	

1 pts
ISMORS
isweis.
1 pts
ne of
1

Question 9	1 pts
When 4.00 kJ of energy is transferred as heat to nitrogen in a cylinder fitted with a piston at an external atm, the nitrogen gas expands from 1.00 L to 4.00 L against this constant pressure. What is ΔU for the	
O +4.91 kJ	
○ -4.91 kJ	
○ +3.09 kJ	
O -0.912 kJ	
Question 10	1 pts
A piece of metal with a mass of 22 g at 92 °C is placed in a calorimeter containing 53.7 g of water at 2 temperature of the mixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that the to the surroundings.	
○ -1.3 x 10 ⁴ J g ⁻¹ °C ⁻¹	
○ -9.5 J g ⁻¹ °C ⁻¹	
1.3 x 10 ⁴ J g ⁻¹ °C ⁻¹	
○ 9.5 J g ⁻¹ °C ⁻¹	
Question 11	1 pts
Consider the following specific heat capacities:	
H_2O (s) = 2.09 J/g·°C	
H_2O (I) = 4.18 J/g·°C	
$H_2O(g) = 2.03 \text{ J/g} \cdot ^{\circ}C$	
The heat of fusion for water is 334 J/g and its heat of vaporization is 2260 J/g. Calculate the amount of convert 93 g of ice at -36°C completely to liquid water at 35°C.	heat required to
○ 38 kJ	

○ 7 kJ	
○ 52 kJ	
○ 21 kJ	
Question 12	1 pts
The specific heat for liquid argon and gaseous argon is 25.0 J/mol·°C and 20.8 J/mol·°C, respectively. The evaporization of argon is 6506 J/mol. How much energy is required to convert 1 mole of liquid Ar from 5°C be point to 1 mole of gaseous Ar at 5°C above its boiling point?	
○ 125 J	
○ 6631 J	
O 229 J	
○ 6735 J	
○ 6610 J	
Question 13	1 pts
Carbon monoxide reacts with oxygen to form carbon dioxide by the following reaction:	
$2CO(g) + O_2(g) \rightarrow 2CO_2(g)$	
Δ H for this reaction is -135.28 kcal. How much heat would be released if 12.0 moles of carbon monoxide resufficient oxygen to produce carbon dioxide? Use only the information provided in this question.	acted with
○ 812 kcal	
◯ 135 kcal	
○ 1620 kcal	
O 412 kcal	

Question 14	
	1 pts
What mass of liquid ethanol (C_2H_5OH) must be burned to supply 500 kJ of heat? The standard enthalpy of combus ethanol at 298 K is -1368 kJ/mol.	stion of
○ 126 g	
O 29.7 g	
○ 10.9 g	
O 16.8 g	
Question 15	1 pts
Burning 1 mol of methane in oxygen to form CO_2 (g) and H_2O (g) produces 803 kJ of energy. How much energy is produced when 3 mol of methane is burned?	
○ 268 kJ	
○ 803 kJ	
○ 2409 kJ	
○ 1606 kJ	
Question 16	1 pts
Consider the following chemical equation:	
$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(l)$ $\Delta H = -2220 \text{ kJ/mol rxn}$	
How much heat is given off when 11.0 g of propane gas (C ₃ H ₈) is burned at constant pressure?	
○ 555 kJ	
○ 2220 kJ	
○ 26.0 kJ	
○ 1670 kJ	

Question	n 17		1 pt
	in reaction at constant $property$ work. What is ΔH for this		ge in internal energy is -52 kJ. In addition, the system does 46 kJ of
○ -6 kJ			
0 6 kJ			
○ 98 kJ			
Question	ı 18		1 pt
		gher energy than	the reactants, then the reaction
is not	spontaneous.		
is exo	thermic.		
_ must t	oe spontaneous.		
is end	othermic.		
Questior	ı 19		1 pt
he specific	c heats and densities of	several materials	are given below:
Material	Specific Heat (cal/g·°C)	Density (g/cm ³)	
Brick	0.220	2.0	
Concrete	0.270	2.7	
Steel	0.118	7	
Water	1.00	1.00	

○ 1.43°C	
○ 1.18°C	
○ 84.7°C	
○ 37.0°C	
Question 20	1 pts
A 1.00 g sample of n-hexane (C_6H_{14}) undergoes complete combustion with excess O_2 in temperature of the 1502 g of water surrounding the bomb rises from 22.64°C to 29.30°C hardware component of the calorimeter (everything that is not water) is 4042 J/°C. What C_6H_{14} ? One mole of n- C_6H_{14} is 86.1 g. The specific heat of water is 4.184 J/g·°C.	C. The heat capacity of the
○ -4.52 x 10 ³ kJ/mol	
○ -1.15 x 10 ⁴ kJ/mol	
○ -5.92 x 10 ³ kJ/mol	
○ -9.96 x 10 ³ kJ/mol	
Question 21	1 pts
When 0.485 g of compound X is burned completely in a bomb calorimeter containing 300 of 0.285°C is observed. What is ΔU of the reaction for the combustion of compound X? To calorimeter has a heat capacity of 3.81 kJ/°C. The specific heat of water is 4.184 J/g·°C,	The hardware component of the
○ -4660 kJ/mol	
○ 4660 kJ/mol	
○ 538 kJ/mol	

1 pts

Question 22

Nitric acid can be manufactured in a	a multi-step process, during which nitric oxide is oxidized to create nitrogen dioxi	de.
$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$		
Calculate the standard reaction enth	nalpy for the above reaction using the following thermodynamic data.	
$N_2(g) + O_2(g) \rightarrow 2NO(g)$ ΔH°_1	= 180.5 kJ/molrxn	
$N_2(g) + 2O_2(g) \rightarrow 2NO_2(g) \Delta H^{\circ}_2$	= 66.4 kJ/molrxn	
246.9 kJ/mol rxn		
100.3 kJ/mol rxn		
-114.1 kJ/mol rxn		
-252.4 kJ/mol rxn		
Question 23		1 pts
Calculate the standard reaction enth	nalpy for the following chemical equation.	
$CH_4(g) + H_2O(g) \rightarrow CO(g) + 3H_2(g)$	3)	
Use the following thermochemical e	equations to solve for the change in enthalpy.	
$2H_2(g) + CO(g) \rightarrow CH_3OH(l)$	$\Delta H^{\circ} = -128.3 \text{ kJ/mol}$	
$2CH_4(g) + O_2(g) \rightarrow 2CH_3OH(l)$	$\Delta H^{\circ} = -328.1 \text{ kJ/mol}$	
$2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$	$\Delta H^{\circ} = -483.6 \text{ kJ/mol}$	
+42.0 kJ/mol		
+155.5 kJ/mol		
+216 kJ/mol		
+206.1 kJ/mol		

Calculate the standard enthalpy change for the following chemical equation.

Use the following thermochemical equations to solve for the change in enthalpy.

 $2\mathsf{HCI}\left(g\right)+\mathsf{F}_{2}\left(g\right)\to2\mathsf{HF}\left(I\right)+\mathsf{CI}_{2}\left(g\right)$

$4HCI(g) + O_2(g) \rightarrow 2H_2O(l) + 2CI_2(g)$	$\Delta H^{\circ} = -202.4 \text{ kJ/mol rxn}$
$1/2 H_2(g) + 1/2 F_2(g) \rightarrow HF(I)$	$\Delta H^{\circ} = -600.0 \text{ kJ/mol rxn}$
$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l)$	$\Delta H^{\circ} = -285.8 \text{ kJ/mol rxn}$
+1015.4 kJ/mol rxn	
-1015.4 kJ/mol rxn	
-1088.2 kJ/mol rxn	
+516.6 kJ/mol rxn	
-1116.6 kJ/mol rxn	
-1587.2 kJ/mol rxn	
+1587.2 kJ/mol rxn	
+1088.2 kJ/mol rxn	
516.6 kJ/mol rxn	
+1116.6 kJ/mol rxn	

Question 25		1 pts
Calculate the standard enthalov cha	inge for the following chemical equation.	
4FeO (s) + O ₂ (g) \rightarrow 2Fe ₂ O ₃ (s)		
Use the following thermochemical ed	quations to solve for the change in enthalpy.	
Fe (s) + $\frac{1}{2}$ O ₂ (g) \rightarrow FeO (s)	$\Delta H = -269 \text{ kJ/mol}$	
2Fe (s) + $3/2 O_2$ (g) \rightarrow Fe ₂ O ₃ (s)	$\Delta H = -825 \text{ kJ/mol}$	
○ 574 kJ/mol		
◯ 556 kJ/mol		
○ -574 kJ/mol		

Question 26	1 pts
Calculate the enthalpy change for the following chemical equation.	
$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$	
Use the following thermochemical data to solve for the change in enthalpy.	
ΔH_f for $SO_2(g) = -16.9 \text{ kJ/mol}$	
ΔH_f for SO ₃ (g) = -21.9 kJ/mol	
○ -5.0 kJ/mol rxn	
○ -77.6 kJ/mol rxn	
-10.0 kJ/mol rxn	
+5.0 kJ/mol rxn	

Question 27	1 pts
Which of the following substances have $\Delta H_f^\circ = 0$? Select all of the correct answers.	
☐ HCI (g)	
☐ HCI (aq)	
☐ F ₂ (g)	
□ Na (s)	

Question 28	1 pts
Calculate the average S–F bond energy in SF $_6$ using the following ΔH_f values:	
$SF_6(g) = -1209 \text{ kJ/mol}$	
S (g) = 279 kJ/mol	
F (g) = 79 kJ/mol	

289 kJ/mol bonds			
582 kJ/mol bonds			
416 kJ/mol bonds			
327 kJ/mol bonds			
196 kJ/mol bonds			

 Question 29
 1 pts

 Using the bond energy data provided, calculate ΔH for the following reaction:

 H₂ (g) + Cl₂ (g) → 2HCl (g)

 Bond Bond Energy (kJ/mol)
 H-H
 436

 CI-CI 242
 H-CI 432

 H-CI 432
 -186 kJ/mol

 186 kJ/mol
 -246 kJ/mol

 -246 kJ/mol
 -246 kJ/mol

Question 30	1 pts
The standard molar enthalpy of formation of NH_3 (g) is -46.11 kJ/mol. What is the standard molar interformation of NH_3 (g)?	nal energy of
○ -48.59 kJ/mol	
○ -43.63 kJ/mol	
○ -2525 kJ/mol	
2433 kJ/mol	

Quiz saved at 8:11am

Submit Quiz