HW05 - H Atom and Electron Configuration

⚠ This is a preview of the published version of the quiz

Started: Jul 7 at 9:44am

Quiz Instructions

Homework 05 - H Atom and Electron Configuration

Question 1	1 pts
Which of the following provided evidence that the electrons in atoms are arranged in distinct energy levels?	
the existence of elements with non-integer atomic weights	
the observation of line spectra from gas discharge tubes	
the results of the Millikan oil-drop experiment	
the scattering of alpha particles by a metal foil	
Question 2	1 pts
Assume n_1 and n_2 are two adjacent energy levels of an atom. The emission of radiation with the longest wave occur for which two values of n_1 and n_2 ?	elength would
O 8,7	
O 2,1	
O 7,6	
O 4,3	

Use the Rydberg formula for atomic hydrogen to calculate the wavelength of the photon emitted in the transition electron from n=4 to n=2.	of an
○ 205 nm	
○ 8.63 nm	
○ 486 nm	
O 94.9 nm	
Question 4	1 pts
What is the name given to the spectroscope series to which the transition described in question 3 belongs?	
O Balmer series	
O Lyman series	
O Brackett series	
O Paschen series	
Question 5	1 pts
In what region of light will the photons emitted in question 3 lie?	
visible, red	
Ultraviolet	
visible, blue	
visible, yellow	
Question 6	1 pts

12	T	ı	ı	ı		
10 - (\						
8 - \						
6					_	
4						
4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						
2					-	
0			ı	1		
0 2	4	6 r (a ₀)	8	10	12	
С						
There is no way to ke						
There is no way to kn	ow.					
Α						
D						
В						

Question 7	1 pts
What is the maximum number of electrons that can have the quantum number n=2 in an atom?	
O 6	
O 8	
<u> </u>	
O 2	

Question 8 1 pts

The three quantum numbers for an electron in a hydrogen atom in a certain state are n=4, ℓ =2, and m $_{\ell}$ =1. The electron is located in what type of orbital?

○ 3p	
○ 4p	
○ 3d	
○ 4d	
Question 9	1 pts
The number that describes the main energy level of an electron in an atom is	
\bigcirc the magnetic quantum number, m_ℓ .	
the principal quantum number, n.	
○ the angular momentum quantum number, ℓ.	
the atomic number, Z.	
Question 10	1 pts
Can an electron in an atom be in an energy level described by the set of quantum numbers n=5, ℓ =3, m $_{\ell}$ =-2?	
○ No, because m _ℓ cannot be negative.	
O No, because m _ℓ must equal ±1.	
O Yes.	
◯ No, because ℓ must equal n-1.	
Question 11	1 pts
An electron in a 3d orbital could have which of the following quantum numbers?	

○ n=3, ℓ=2, m _ℓ =0	
○ n=3, ℓ=2, m _ℓ =-3	
○ n=3, ℓ=1, m _ℓ =-1	
Question 12	1 pts
How many p electrons does Se (atomic number 34) possess?	
O 4	
<u> </u>	
O 34	
O 16	
Question 13	1 pts
For which H-atom wavefunction are you most likely to find the electron farthest from the nucleus?	
To which the atom wavelunction are you most indry to find the diection lattilest from the nucleus?	
2s	
O 2s	
○ 2s ○ 2p	
2s2p4p	
2s2p4p	1 pts
2s2p4p3p	1 pts
2s 2p 4p 3p	1 pts

Of subshells.	
O d subshells.	
Question 15	1 pts
Which element is predicted to have the ground-state electron configuration shown below?	
[Ne] $3s^2 3p^4$	
Silicon	
sulfur	
o aluminum	
Chlorine	
Question 16	1 pts
Question 16 Which of the following is the valence electronic structure for a halogen?	1 pts
	1 pts
Which of the following is the valence electronic structure for a halogen?	1 pts
Which of the following is the valence electronic structure for a halogen? Ons² nd¹0	1 pts
Which of the following is the valence electronic structure for a halogen? ons² nd¹0 ons² np⁵	1 pts
Which of the following is the valence electronic structure for a halogen? ons² nd¹0 ns² np⁵ ns²	1 pts
Which of the following is the valence electronic structure for a halogen? ons² nd¹0 ns² np⁵ ns² ns² ns²	1 pts
Which of the following is the valence electronic structure for a halogen? ons² nd¹0 ns² np⁵ ons²	1 pts
Which of the following is the valence electronic structure for a halogen? ons² nd¹0 ns² np⁵ ns² ns² ns²	
Which of the following is the valence electronic structure for a halogen? ons² nd¹0 ns² np⁵ ns² ns² ns² ns² ns² np6	

○ 3f	
○ 4d	
Question 18	1 pts
he electron configuration for the Mn atom is	
1s ² 2s ² 2p ⁶ 3s ² 3p ³	
\bigcirc 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 7	
\bigcirc 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 5	
\bigcirc 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 4p ⁵	
uestion 19	1 pts
The ground state electron configuration of a neutral silver atom is [Kr] 5s ¹ 4d ¹⁰ instead of [Kr] 5s ² be explained (theoretically) by the fact that	² 4d ⁹ . This observation can
an enhanced stability is associated with filled sets of equivalent orbitals.	
the 4d subenergy level has higher energy than the 5s subenergy level.	
only one electron can occupy a 5s orbital.	
the magnetism measurement shows one unpaired electron.	
Question 20	1 pts
/hich of the following atoms has the largest radius?	
○ Ne	
○ F	

Br	
○ CI	
Question 21	1 pts
As an atom's radius decreases	
its ionization energy does not change.	
its ionization energy increases.	
its ionization energy decreases.	
its ionization energy will either increase or decrease depending on wheth a row.	ner you are going up a column or across
Question 22	1 pts
Which of the following would be expected to have the highest first ionization end	ergy?
○ Ar	
◯ Xe	
◯ Si	
○ Na	
○ CI	
Question 23	1 pts
How many s electrons does P (atomic number 15) possess?	
O 4	
0	

2	
O 6	
O 5	
Question 24	1 pts
How many values of the quantum number ℓ are possible when n=5?	
O 7	
O 6	
O 4	
O 5	
Question 25	1 pts
Question 25 How many values of m_ℓ are allowed for an electron in a 5f subshell?	1 pts
	1 pts
How many values of m _ℓ are allowed for an electron in a 5f subshell?	1 pts
How many values of m _ℓ are allowed for an electron in a 5f subshell?	1 pts
How many values of m _ℓ are allowed for an electron in a 5f subshell?	1 pts
How many values of m _ℓ are allowed for an electron in a 5f subshell? 7 6 5	1 pts
How many values of m _ℓ are allowed for an electron in a 5f subshell? 7 6 5	1 pts
How many values of m _ℓ are allowed for an electron in a 5f subshell? 7 6 5	1 pts
How many values of m _ℓ are allowed for an electron in a 5f subshell? 7 6 5 4	
How many values of m _ℓ are allowed for an electron in a 5f subshell? 7 6 5 4 Question 26	

O 3	
None of these.	
Question 27	1 pts
How many subshells are there in the shell with n=3?	
O 4	
O 3	
O 2	
O 1	
Question 28	1 pts
The diameter of the electron density of an atom is roughly	
○ 1 - 5 nm	
O.1 - 0.5 nm	
O 10 - 50 nm	
None of these.	
Question 29	1 pts
For which of the following elements would the size of the neutral atom (atomic radius) be the largest?	
○ Rb	
○ Ca	
○ Sr	

O Na			

Question 30	1 pts
Write an equation that represents the second ionization energy of copper.	
$\bigcirc Cu(g) \longrightarrow Cu^{2+}(g) + e^{-}$	
\bigcirc Cu ⁺ (g) \longrightarrow Cu ²⁺ (g) + e ⁻	
\bigcirc Cu(g) \longrightarrow Cu ⁺ (g) + e ⁻	
$\bigcirc Cu(g) \longrightarrow Cu^{2+}(g) + 2e^{-}$	

Not saved

Submit Quiz