HW03 - Non-ideal Gases

This is a preview of the published version of the quiz

Started: Jul 7 at 9:43am

Quiz Instructions

Homework 03 - Non-ideal Gases

(only 2 attempts)

Question 1	1 pts
Two gases are contained in gas bulbs connected by a valve. Gas A is present in a 1 liter bulb at a pressure of 818 B exerts a pressure of 328 torr in a 1 liter bulb. The valve is opened and the two gases come to equilibrium. What i partial pressure of gas A expressed after equilibrium?	
○ 409 torr	
0 656 torr	
164 torr	
1640 torr	

Question 2	1 pts
A mixture of oxygen and helium is 92.3% by mass oxygen. It is collected at atmospheric pressure (745 torr). What partial pressure oxygen in this mixture? Hint: partial pressures are calculated from the total pressure via MOLE FRACTIONS.	is the
0 688 torr	
O 412 torr	
333 torr	
0 447 torr	

Question 3	1 pts
If the average speed of a water molecule at 25°C is 640 m/s, what is the average speed at 100°C?	
◯ 572 m/s	
◯ 1280 m/s	
◯ 320 m/s	
◯ 716 m/s	

Question 4	1 pts
Air bags in automobiles contain crystals of sodium azide (NaN ₃) which, during a collision, decompose rapidly to give nitrogen gas and sodium metal. (Potassium nitrate and silicon dioxide are added to remove the sodium metal by cor it into a harmless material.) The nitrogen gas liberated behaves as an ideal gas and any solid produced has a negligi volume (its volume can be ignored). Calculate the mass of sodium azide required to generate enough nitrogen gas to 57.0 L air bat at 1.04 atm and 16°C.	nverting ble
🔿 108 g	
○ 2.50 g	
🔿 163 g	
🔘 1960 g	

Question 5	1 pts
What is the root mean square speed of the nitrogen gas molecules generated in question 4?	
◯ 507 m/s	
◯ 1.59 m/s	
◯ 50.4 m/s	
◯ 16.0 m/s	

1 pts

Question 7	1 pts
A plot of the Maxwell distribution of speeds for the same sample of gas at different temperatures shows that	
O as the temperature decreases, the distribution of speeds widens.	
O at high temperatures, most molecules have speeds close to their average speed.	
O at low temperatures, most molecules have speeds close to their average speed.	
as the temperature decreases, a high proportion of molecules have very high speeds.	
O as the temperature increases, a high proportion of molecules have very slow speeds.	

Question 8	1 pts
Consider the gases H_2 , Ne, O_2 , and Ar. Put them in order of their DECREASING rate of effusion.	
[Select]	
-[Select]	

Question 9	1 pts
Calculate the ratio of the rate of effusion of CO_2 to that of He.	
0.090 : 1	
0 3.3 : 1	
0.30 : 1	
0 12 : 1	
0 11 : 1	

Question 10	1 pts
A sample of He gas and O_2 have the same temperature, pressure, and volume. Which gas has a greater number of collision of gas molecules with the walls of the container?	
\bigcirc The O ₂ gas since it has a higher average kinetic energy because it is more massive.	
O The He gas because it is less massive and moving with a higher average velocity.	
\bigcirc The O ₂ , since it has a higher average momentum as it is more massive.	
They are the same since the pressure is the same.	

Question 11	1 pts
Nitric acid is produced commercially by the Ostwald process. In the first step, ammonia is oxidized to nitric oxide following reaction equation:	via the
$4NH_3(g) + 5O_2(g) \longrightarrow 4NO(g) + 6H_2O(g)$	
A sample of NH_3 gas in a 2.00 L container exerts a pressure of 0.500 atm. A sample of O_2 gas in a 1.00 L contain a pressure of 1.50 atm. If these two gasses are pumped into a 3.00 L container and allowed to react with one ar (with proper catalysts), calculate the partial pressure of NO after the reaction is complete. Assume 100% yield for reaction at a constant temperature.	other

🔘 0.400 atm

🔵 0.333 atm

🔵 1.50 atm

🔵 0.250 atm

 \bigcirc

Question 12	1 pts
A 5.0 L flask containing O_2 at 2.00 atm is connected to a 3.0 L flask containing H_2 at 4.00 atm and the gases are to mix. What is the mole fraction of H_2 ?	allowed
0.33	
0.25	
0.67	
0.55	

Question 13	1 pts
A gas mixture being used to simulate the atmosphere of another planet at 23°C consists of 337 mg of methane, 148 argon, and 210 mg of nitrogen. The partial pressure of nitrogen at 296 K is 19.0 kPa. Calculate the total pressure of th mixture.	•
○ 81.6 kPa	
O 29.1 kPa	
🔵 109 kPa	
🔘 165 kPa	

Question 14	1 pts
Calculate the volume of the mixture described in question 13.	

9.58 mL			
🔘 0.226 L			
🔘 0.902 L			
🔵 0.971 L			

Question 15	1 pts
When heated, solid mercury oxide (HgO) will decompose into mercury and oxygen gas according to following equat	tion:
$2HgO(s) \longrightarrow 2Hg(g) + O_2(g)$ Starting with a container that has only solid HgO in it, the temperature is raised to 700 K and all of the solid decomp The total pressure in the container is 0.75 bar. What is the partial pressure of oxygen?	ooses.
○ 0.50 bar	
○ 0.25 bar	
O 0.125 bar	
🔘 0.75 bar	

Question 16	1 pts
All gases exhibit ideal behavior in low pressure situations because when the pressure is very low, the gas particles a	are
O far apart and rarely interacting.	
O undergoing only elastic collisions.	
O moving very slowly.	
Slightly attracted to one another.	
experiencing a balance of kinetic and potential energy.	

Question 17
i þís
Deviations from ideal gas behavior can be modeled with other equations of state. One such equation that attempts to account for the repulsive interactions of gas particles is the hard sphere model:
P(V-nb) = nRT
A 1 mole sample of He gas at 1000 K and 500 bar has a volumes of 0.176 L. Estimate the value of the constant 'b' in the hard sphere model for He.
O 0.176 L/mol
O 0.166 L/mol
O b = 0.025 L/mol
O b = 0.01 L/mol

Question 18	1 pts
The ideal gas equation models the gas behavior observed in the world	
very well under all conditions for most gases.	
O perfectly for temperatures under 1000 K.	
perfectly for some gases, but not for others.	
O perfectly for pressures under 20 atm.	
very well under some conditions, but shows large errors in others.	

Question 19	1 pts
Which of the following gases would you predict to have the largest value of the van der Waals coefficient, 'b?'	
◯ C ₂ F ₂ Cl ₄	
○ CO ₂	
○ C ₂ FCl ₅	

$\bigcirc C_2F_6$

Cl₂

Question 20

1 pts

Consider the following van der Waals coefficients:

Gas	a (L ² ·atm·mol⁻²)	b (L·mol⁻¹)
ammonia	4.17	0.0371
chlorine	6.49	0.0562
helium	0.034	0.0237
neon	0.211	0.0171
water	5.46	0.0305

Which of the following gases has the largest attractive forces?

O helium	
O chlorine	
🔘 ammonia	
O water	
O neon	

Not saved	Submit Quiz