HW02 - Ideal Gases

⚠ This is a preview of the published version of the quiz

Started: Jul 7 at 9:42am

Quiz Instructions

Homework 02 - Ideal Gases

(only 2 attempts)

Question 1	1 pts
A gas is enclosed in a 10.0 L tank at 1200 mmHg pressure. Which of the following is a reasonable value for when the gas is pumped into a 5.00 L vessel?	r the pressure
○ 0.042 mmHg	
O 24 mmHg	
○ 2400 mmHg	
○ 600 mmHg	
Question 2	1 mto
Question 2	1 pts
A sample of gas in a closed container at a temperature of 76°C and a pressure of 5.0 atm is heated to 399 pressure does the gas exert at the higher temperature?	°C. What
26 atm	
9.6 atm	
2.6 atm	
O 0.95 atm	

Question 3	1 pts
A flask containing 163 cm ³ of hydrogen was collected under a pressure of 26.7 required for the volume of the gas to have been 68 cm ³ , assuming the temperat	
○ 32.0 kPa	
○ 11.1 kPa	
○ 64.0 kPa	
○ 78.2 kPa	
Question 4	1 pts
A sample of nitrogen gas is contained in a piston with a freely moving cylinder. A what temperature must the gas be heated to occupy a volume of 557 mL?	at 0°C, the volume of the gas is 371 mL. To
○ 484°C	
○ -91.2°C	
○ 137°C	
○ 212°C	
Question 5	1 pts
A 5.00 L sample of a gas exerts a pressure of 1040 torr at 50.0°C. In what volur pressure of 1.00 atm at 50.0°C?	me would the same sample exert a
○ 10.5 L	
○ 6.84 L	
○ 3.33 L	
○ 0.581 L	

Question 6	1 pts
Consider the following reaction:	
$2AI + 6HCI \longrightarrow 2AICI_3 + 3H_2$	
This reaction has a yield of 82.5%. How many moles of HCl are needed to produce 14.0 L of H ₂ at 351 K and 1.	11 atm?
O 0.540 mol	
O.890 mol	
○ 1.31 mol	
○ 1.08 mol	
Question 7	1 pts
	<u> </u>
If you have 44.8 L of nitrogen gas at standard temperature and pressure, how much will it weigh?	
○ 28 g	
○ 28 kg	
○ 44.8 g	
○ 56 g	
Question 8	1 pts
At 80.0°C and 12.0 torr, the density of camphor vapor is 0.0829 g/L. What is the molar mass of camphor?	
○ 34.5 g/mol	
○ 152 g/mol	
○ 3490 g/mol	
243 g/mol	

Question 9	1 pts
What is the density of nitrogen gas at STP?	
○ 1.25 g/L	
○ 2.50 g/L	
○ 0.625 g/L	
○ 4.00 g/L	
Question 10	1 pts
A chemist has synthesized a greenish-yellow gaseous compound that contains only of 7.71 g/L at 36.0°C and 2188.8 mmHg. What is the molar mass of the compound 51.5 g/mol	
○ 86.9 g/mol	
25.8 g/mol	
O 67.9 g/mol	
Question 11	1 pts
How many moles of gaseous carbon dioxide are there in 15 L at STP?	
0.52 moles	
3.0 moles	
1.0 moles	
O.67 moles	

	1 pts
Consider the following reaction:	
$CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(l)$	
What is the final volume if 10 L of methane (CH_4) reacts completely with 20 L of oxygen?	
It cannot be determined without knowing the temperature at which this reaction takes place.	
○ 10 L	
○ 20 L	
○ 30 L	
○ 15 L	
Question 13	1 pts
$C_6H_{12}O_6 \rightarrow 3CH_4 + 3CO_2$ 1430 L	
O 2610 L	
○ 1450 L	
○ 858 L	
○ 858 L	
	1 pts
Question 14	1 pts
Question 14 Consider the following reaction:	1 pts
Question 14 Consider the following reaction: $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$ If the reaction is carried out at constant temperature and pressure, how much H_2 is required to react where H_3 is required to H_3 is required to react where H_3 is required to H_3 is H_3 in H_3 is required to H_3 is H_3 in H_3 in H_3 is H_3 in H_3 in H_3 in H_3 is H_3 in H_3	

○ 19.6 L	
○ 29.4 L	
Question 15	1 pts
Question 15 What volume of pure oxygen gas (O_2) measured at 546 K and 1.00 a Ag_2O ? $2Ag_2O(s) \longrightarrow 4Ag(s) + O_2(g)$	
What volume of pure oxygen gas (O_2) measured at 546 K and 1.00 a Ag_2O ?	
What volume of pure oxygen gas (O ₂) measured at 546 K and 1.00 a Ag ₂ O? $2Ag_2O(s) \longrightarrow 4Ag(s) + O_2(g)$	
What volume of pure oxygen gas (O ₂) measured at 546 K and 1.00 a Ag ₂ O? $2 \text{Ag}_2\text{O(s)} \longrightarrow 4 \text{Ag(s)} + \text{O}_2\text{(g)}$ 11.2 L	

Question 16	1 pts
If the volume of a gaseous syster	n is increased by a factor of 3 and the temperature is raised by a factor of 6, then the
pressure of the system will	
O decrease, 18	
increase, 0.5	
decrease, 0.5	
increase, 2	
O decrease, 2	
increase, 18	

Question 17 1 pts

O 432 g	
○ 4.10 g	
○ 131 g	
What is the mass of oxygen gas in a 16.6 L container at 34.0°C and 6.22 atm?	
Question 19	1 p
O the O ₂	
O the Cl ₂	
they are the same	
It depends on the value of the temperature and pressure.	
Which has the higher mass density (g/L): a sample of $\rm O_2$ with a volume of 10 L, or a sample of samples are at the same temperature and pressure.	of Cl ₂ with a volume of 3 L?
Question 18	1 p
the Ar gas	
they are the same	
It depends on the value of the temperature and the pressure.	
the H ₂ gas	

Question 20 1 pts

.30 x 10 ⁹ atm, calculate the temperature.	
2.26 x 10 ⁷ °C	
○ 2.26 x 10 ¹⁰ °C	
○ 2.26 x 10 ¹³ °C	
○ 700°C	
Question 21	1 pts
What is the molar mass of a gas if 0.473 g of the gas occupies a volume of 376 mL at 23.0°C	and 1.90 atm?
13.2 g/mol	
1.25 g/mol	
0.0161 g/mol	
○ 16.1 g/mol	
Question 22	1 pts
Consider the following reaction:	
$HCI + Na_2CO_3 \longrightarrow 2NaCI + H_2O + CO_2$	
or this reaction, 179.2 L of CO_2 is collected at STP. How many moles of NaCl are also formed	d?
12.5 moles	
16.0 moles	
8.00 moles	

○ C ₃ H ₈		
○ C ₄ H ₁₀		
○ C ₄ H ₆		
C ₂ H ₄		