HW02 - Ideal Gases

4. This is a preview of the published version of the quiz

Started: Jul 7 at 9:42am

Quiz Instructions

Homework 02 - Ideal Gases

(only 2 attempts)

Question 1

1 pts

A gas is enclosed in a 10.0 L tank at 1200 mmHg pressure. Which of the following is a reasonable value for the pressure when the gas is pumped into a 5.00 L vessel?0.042 mmHg24 mmHg2400 mmHg600 mmHg

Question 2

1 pts

A sample of gas in a closed container at a temperature of $76^{\circ} \mathrm{C}$ and a pressure of 5.0 atm is heated to $399^{\circ} \mathrm{C}$. What pressure does the gas exert at the higher temperature?26 atm9.6 atm2.6 atm0.95 atm

A flask containing $163 \mathrm{~cm}^{3}$ of hydrogen was collected under a pressure of 26.7 kPa . What pressure would have been required for the volume of the gas to have been $68 \mathrm{~cm}^{3}$, assuming the temperature is held constant?
32.0 kPa11.1 kPa64.0 kPa78.2 kPa

Question 4

A sample of nitrogen gas is contained in a piston with a freely moving cylinder. At $0^{\circ} \mathrm{C}$, the volume of the gas is 371 mL . To what temperature must the gas be heated to occupy a volume of 557 mL ?$484^{\circ} \mathrm{C}$$-91.2^{\circ} \mathrm{C}$$137^{\circ} \mathrm{C}$$212^{\circ} \mathrm{C}$

Question 5

1 pts

A 5.00 L sample of a gas exerts a pressure of 1040 torr at $50.0^{\circ} \mathrm{C}$. In what volume would the same sample exert a pressure of 1.00 atm at $50.0^{\circ} \mathrm{C}$?10.5 L6.84 L3.33 L0.581 L

Consider the following reaction:
$2 \mathrm{Al}+6 \mathrm{HCl} \longrightarrow 2 \mathrm{AlCl}_{3}+3 \mathrm{H}_{2}$
This reaction has a yield of 82.5%. How many moles of HCl are needed to produce 14.0 L of H_{2} at 351 K and 1.11 atm?0.540 mol0.890 mol1.31 mol1.08 mol

If you have 44.8 L of nitrogen gas at standard temperature and pressure, how much will it weigh?28 g28 kg44.8 g56 g

Question 8	
At $80.0^{\circ} \mathrm{C}$ and 12.0 torr, the density of camphor vapor is $0.0829 \mathrm{~g} / \mathrm{L}$. What is the molar mass of camphor?	
$34.5 \mathrm{~g} / \mathrm{mol}$	
$152 \mathrm{~g} / \mathrm{mol}$	
$3490 \mathrm{~g} / \mathrm{mol}$	
$243 \mathrm{~g} / \mathrm{mol}$	1 pts

What is the density of nitrogen gas at STP?$1.25 \mathrm{~g} / \mathrm{L}$$2.50 \mathrm{~g} / \mathrm{L}$$0.625 \mathrm{~g} / \mathrm{L}$$4.00 \mathrm{~g} / \mathrm{L}$

Question 10

1 pts

A chemist has synthesized a greenish-yellow gaseous compound that contains only chlorine and oxygen and has a density of $7.71 \mathrm{~g} / \mathrm{L}$ at $36.0^{\circ} \mathrm{C}$ and 2188.8 mmHg . What is the molar mass of the compound?$51.5 \mathrm{~g} / \mathrm{mol}$$86.9 \mathrm{~g} / \mathrm{mol}$$25.8 \mathrm{~g} / \mathrm{mol}$$67.9 \mathrm{~g} / \mathrm{mol}$

Question 11	1 pts
How many moles of gaseous carbon dioxide are there in 15 L at STP?	
0.52 moles	
3.0 moles	
1.0 moles	
0.67 moles	

Consider the following reaction:
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
What is the final volume if 10 L of methane $\left(\mathrm{CH}_{4}\right)$ reacts completely with 20 L of oxygen?It cannot be determined without knowing the temperature at which this reaction takes place.10 L20 L30 L15 L

Question 13
Calculate the volume of methane $\left(\mathrm{CH}_{4}\right)$ produced by the bacterial breakdown of 3.87 kg of sugar $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ at 258 K and
726 torr.
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow 3 \mathrm{CH}_{4}+3 \mathrm{CO}_{2}$
1430 L
2610 L
1450 L
858 L

Question 14
 1 pts

Consider the following reaction:
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
If the reaction is carried out at constant temperature and pressure, how much H_{2} is required to react with 9.8 L of N_{2} ?
39.2 L19.6 L29.4 L

Question 15

1 pts

What volume of pure oxygen gas $\left(\mathrm{O}_{2}\right)$ measured at 546 K and 1.00 atm is formed by complete dissociation of 0.5 mol of $\mathrm{Ag}_{2} \mathrm{O}$?
$2 \mathrm{Ag}_{2} \mathrm{O}(\mathrm{s}) \longrightarrow 4 \mathrm{Ag}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})$11.2 L33.6 L16.8 L5.60 L

Question 16

If the volume of a gaseous system is increased by a factor of 3 and the temperature is raised by a factor of 6 , then the pressure of the system will \qquad by a factor of \qquad _.decrease, 18increase, 0.5decrease, 0.5increase, 2decrease, 2increase, 18

You have a sample of H_{2} gas and Ar gas at the same temperature and pressure, but the H_{2} gas has twice the volume of the Ar gas. Assuming the gases behave ideally, which gas has the larger NUMBER DENSITY (gas particles per volume)?the H_{2} gasIt depends on the value of the temperature and the pressure.they are the samethe Ar gas

Question 18

Which has the higher mass density $(\mathrm{g} / \mathrm{L})$: a sample of O_{2} with a volume of 10 L , or a sample of Cl_{2} with a volume of 3 L ? Both samples are at the same temperature and pressure.It depends on the value of the temperature and pressure.they are the samethe Cl_{2}the O_{2}

Question 19

What is the mass of oxygen gas in a 16.6 L container at $34.0^{\circ} \mathrm{C}$ and 6.22 atm ?131 g4.10 g432 g1180 g

One method of estimating the temperature of the center of the sun is based on the assumption that the center consists of gases that have an average molar mass of $2.00 \mathrm{~g} / \mathrm{mol}$. If the density of the center of the sun is $1.40 \mathrm{~g} / \mathrm{cm}^{3}$ at a pressure of $1.30 \times 10^{9} \mathrm{~atm}$, calculate the temperature.$2.26 \times 10^{7}{ }^{\circ} \mathrm{C}$$2.26 \times 10^{10}{ }^{\circ} \mathrm{C}$$2.26 \times 10^{13}{ }^{\circ} \mathrm{C}$$700^{\circ} \mathrm{C}$

Question 21

What is the molar mass of a gas if 0.473 g of the gas occupies a volume of 376 mL at $23.0^{\circ} \mathrm{C}$ and 1.90 atm ?$13.2 \mathrm{~g} / \mathrm{mol}$$1.25 \mathrm{~g} / \mathrm{mol}$$0.0161 \mathrm{~g} / \mathrm{mol}$

$16.1 \mathrm{~g} / \mathrm{mol}$

Question 22

Consider the following reaction:
$2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{CO}_{3} \longrightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
For this reaction, 179.2 L of CO_{2} is collected at STP. How many moles of NaCl are also formed?12.5 moles16.0 moles8.00 moles32.0 moles

The analysis of a hydrocarbon revealed that it was $85.6281 \% \mathrm{C}$ and $14.3719 \% \mathrm{H}$ by mass. When 3.22 g of the gas was stored in a 1.2 L flask at $-190.842^{\circ} \mathrm{C}$, it exerted a pressure of 491 torr. What is the molecular formula of the hydrocarbon?

$\mathrm{C}_{3} \mathrm{H}_{8}$

$\mathrm{C}_{4} \mathrm{H}_{10}$$\mathrm{C}_{4} \mathrm{H}_{6}$$\mathrm{C}_{2} \mathrm{H}_{4}$