HW01 - Chemistry Fundamentals

⚠ This is a preview of the published version of the quiz

Started: Jul 7 at 9:42am

Quiz Instructions

Homework 01 - Chemistry Fundamentals

(only 2 attempts)

Question 1	1 pts
The measurement 4.7×10^{-3} m could also be written as	
○ 4.7 km	
O 4.7 Mm	
O 4.7 nm	
O 4.7 mm	
Question 2	1 pts
The mole concept is important in chemistry because	
it allows us to count atoms and molecules by weighing macroscopic amounts of material.	
it establishes a standard for reaction stoichiometry.	
it provides a universally accepted standard for mass.	
it allows us to distinguish between elements and compounds.	

How many atoms of hydrogen are contained in 2 moles of methane (CH ₄)?	
○ 4.82 x 10 ²⁴ atoms	
1.20 x 10 ²⁴ atoms	
2.41 x 10 ²⁴ atoms	
O 4 atoms	
Question 4	1 pts
Which has the greatest number of hydrogen atoms?	
○ 10 ²⁰ hydrogen atoms	
100g of a substance that is 2% H by mass	
20g of hydrogen gas	
100g of water	
Question 5	1 pts
Consider the following UNBALANCED chemical equation:	
$Ca(OH)_2(aq) + H_3PO_4(aq) \longrightarrow Ca_3(PO_4)_2(s) + H_2O(l)$	
What is the coefficient for H_2O when the reaction is balanced using the smallest possible integers?	
O 1	
O 3	
○ 6	
O 4	
O 2	

Question 6	1 pts
When aluminum metal is heated with manganese oxide, the following reaction occurs:	
$Al + MnO_2 \longrightarrow Al_2O_3 + Mn$	
Balance this equation. What is the sum of the coefficients of ALL species in the balanced chemical equation?	
O 7	
O 10	
O 15	
O 12	
Question 7	1 pts
When the equation	
$PbS + O_2 \longrightarrow PbO + SO_2$	
is balanced, the coefficients are, respectively.	
0 1, 2, 3, 3	
O 1, 2, 1, 1	
2, 3, 2, 2	
O 2, 2, 1, 2	
Question 8	1 pts
Consider the UNBALANCED reaction below.	
$Al_2(SO_4)_3 + NaOH \longrightarrow Al(OH)_3 + Na_2SO_4$	
Balance this equation using the smallest possible integers. What is the sum of the coefficients in the balanced eq	uation?
O 6	

8	
O 14	
O 12	
O 10	
Question 9	1 pts
Which of the following has the greatest number of ATOMS?	
◯ 3.05 moles of CH ₄	
3.05 moles of argon	
3.05 moles of water	
These all have the same number of atoms.	
Question 10	1 pts
If 100.0 grams of copper (Cu) completely reacts with 25.0 grams of oxygen, how much from 140.0 grams of copper and excess oxygen? (Note: CuO is the only product of this	
◯ 35.00 g	
210.0 g	
○ 175.0 g	
◯ 160.0 g	
Question 11	1 pts
Consider the following reaction:	

If 12.50 g of iron (III) oxide (rust) are produced from 8.74 g of iron, how much oxygen gas is needed for this reaction?	
○ 21.24 g	
○ 7.55 g	
○ 3.76 g	
○ 8.74 g	
Question 12	1 pts
Upon heating, potassium chlorate produces potassium chloride and oxygen.	
$2KCIO_3 \longrightarrow 2KCI + 3O_2$	
What mass of oxygen would be produced upon thermal decomposition of 25 g of potassium chlorate ($KClO_3$)? The molecular weight (MW) of potassium chlorate is 122.5 g/mol.	
○ 4.9 g	
O 6.5 g	
○ 3.3 g	
O 9.8 g	
Question 13	1 pts
Consider the following reaction:	
$CO + O_2 \longrightarrow CO_2$	
How much oxygen is required to convert 35 g of CO into CO ₂ ?	
○ 35 g	
O 40 g	
O 20 g	
○ 10 g	

Question 14	1 pts
Consider the following reaction:	
$N_2 + H_2 \longrightarrow NH_3$	
How many MOLECULES of NH_3 can be produced from the reaction of 74.2 g of N_2 and 14.0 moles of H_2 ?	
1.26 x 10 ²⁵ molecules	
○ 4.45 x 10 ²⁴ molecules	
○ 5.62 x 10 ²⁴ molecules	
3.19 x 10 ²⁴ molecules	

pts

Saving...

Submit Quiz