Compound Stoichiometry - Mole Concept

Consider a sample of copper(II) sulfate pentahydrate. It's a blue coarse crystalline substance and is sitting on a laboratory balance as shown below. The chemical formula for copper(II) sulfate is $CuSO_4 \cdot 5H_2O$. Note that the " $\cdot 5$ " in front of the H₂O means that 5 waters of hydration are part of the formula. The " $\cdot 5$ " does NOT mean *times five* (×5). If the blue hydrated copper(II) sulfate is heated to 110°C, 4 of the 5 hydrates (water molecules) will come off leaving only 1 hydrate. The formula for copper(II) sulfate monohydrate would be $CuSO_4 \cdot H_2O$.and it is a very pale blue color. Note how there is only one hydrate left. It is "held" tighter than the other 4 hydrates and will not come off at 110°C. However, if it is heated to 150°C (or higher) the last hydrate comes off and you would then have anhydrous copper(II) sulfate which has a chemical formula of CuSO₄ and is white in color. Needless to say, the weights of equal amounts (moles) of each of these compounds will be different because of the waters of hydration. The CuSO₄·5H₂O (249.7 g/mol) will weigh the most and the CuSO₄ (159.6 g/mol) will weigh the least.

Consider of all the different ways that a sample of 62.421 grams of CuSO₄·5H₂O can be looked at by a chemist. Note that this is equivalent to 0.250 moles of CuSO₄·5H₂O.

Note also how you can view the sample in an elemental way (left of the green marker line), or simply as a compound (CuSO₄) and water (H₂O) which is on the right side of the green marker line.