Compound Stoichiometry - Mole Concept

Consider a sample of copper(II) sulfate pentahydrate. It's a blue coarse crystalline substance and is sitting on a laboratory balance as shown below. The chemical formula for copper(II) sulfate is $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$. Note that the " $\cdot 5$ " in front of the $\mathrm{H}_{2} \mathrm{O}$ means that 5 waters of hydration are part of the formula. The " $\cdot 5$ " does NOT mean times five $(\times 5)$. If the blue hydrated copper(II) sulfate is heated to $110^{\circ} \mathrm{C}, 4$ of the 5 hydrates (water molecules) will come off leaving only 1 hydrate. The formula for copper(II) sulfate monohydrate would be $\mathrm{CuSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$. and it is a very pale blue color. Note how there is only one hydrate left. It is "held" tighter than the other 4 hydrates and will not come off at $110^{\circ} \mathrm{C}$. However, if it is heated to $150^{\circ} \mathrm{C}$ (or higher) the last hydrate comes off and you would then have anhydrous copper(II) sulfate which has a chemical formula of CuSO_{4} and is white in color. Needless to say, the weights of equal amounts (moles) of each of these compounds will be different because of the waters of hydration. The $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(249.7 \mathrm{~g} / \mathrm{mol})$ will weigh the most and the $\mathrm{CuSO}_{4}(159.6 \mathrm{~g} / \mathrm{mol})$ will weigh the least.

Consider of all the different ways that a sample of 62.421 grams of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ can be looked at by a chemist. Note that this is equivalent to 0.250 moles of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$.

Note how the individual parts add up to make the whole:

| 15.888 |
| :--- | :--- |
| g of Cu | | 8.017 |
| :--- |
| g of S |$+\underset{\mathrm{g} \text { of } \mathrm{H}}{2.52}+$| 36.00 |
| :--- |
| g of O |$=$| 62.425 |
| :--- |
| g of CuSO4.5H2O |

Note also how you can view the sample in an elemental way (left of the green marker line), or simply as a compound $\left(\mathrm{CuSO}_{4}\right)$ and water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ which is on the right side of the green marker line.

