TYPE 1 (conj. ACID of a weak base)
 (only the SALT of a weak base is put in solution)

For a salt, BHX, of the weak base (B) in water:
BHX (s) $+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{BH}^{+}+\mathrm{X}^{-} \quad\left(100 \%\right.$ ionization!!!, and X^{-}is some anion of a strong acid - it does nothing)

Note that BH^{+}behaves EXACTLY like a weak acid in water (a Type 1 problem for acids) and the equilibria is
$\mathrm{BH}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{B} \quad-\mathrm{or}-\mathrm{BH}^{+} \rightleftharpoons \mathrm{H}^{+}+\mathrm{B}$
$K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right][\mathrm{B}]}{\left[\mathrm{BH}^{+}\right]}$
member K_{a} for BH^{+}must be calculated from K_{b} for B: $\quad K_{\mathrm{a}}=\frac{K_{\mathrm{w}}}{K_{\mathrm{b}}}$
Now let $\mathrm{C}_{\mathrm{BH}+}$ be the analytical concentration (label) of the conjugate acid, BH^{+}:
Our Equilibrium "Chart"

	$\left[\mathbf{B H}^{+}\right]$	$\left[\mathbf{H}^{+}\right]$	$[\mathbf{B}]$
initial	$\mathrm{C}_{\mathrm{BH}+}$	0	0
change	$-x$	$+x$	$+x$
final	$\mathrm{C}_{\mathrm{BH}_{+}-x}$	X	x

$$
\begin{gathered}
K_{\mathrm{a}}=\frac{x^{2}}{\left(\mathrm{C}_{\mathrm{BH}^{+}}-x\right)} \\
K_{\mathrm{a}} C_{\mathrm{BH}^{+}}-K_{\mathrm{a}}(x)=x^{2} \\
0=x^{2}+K_{\mathrm{a}}(x)-K_{\mathrm{a}} \mathrm{C}_{\mathrm{BH}^{+}}
\end{gathered}
$$

$$
\text { Equation } 3.1
$$

$$
\left[\mathrm{H}^{+}\right]=[\mathrm{B}]=x=\frac{-K_{\mathrm{a}}+\sqrt{K_{\mathrm{a}}^{2}+4 K_{\mathrm{a}} \mathrm{C}_{\mathrm{BH}^{+}}}}{2}
$$

This equation is the exact solution for calculating the $\left[\mathrm{H}^{+}\right]$for any solution made by mixing a concentration of ONLY a conjugate weak acid, BH^{+}, in water.

If we are using a REASONABLE concentration for BH^{+}(somewhere between 1.0 M and 0.05 M) AND K_{a} is small enough (say less than 10^{-4}) we can make the following assumption:

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{BH}+}-x \cong \mathrm{C}_{\mathrm{BH}+} \quad \text { all this is saying is that } x \text { is so small compared to } \mathrm{C}_{\mathrm{BH}+} \text {, it doesn't change it } \\
& K_{\mathrm{a}}=\frac{x^{2}}{\mathrm{C}_{\mathrm{BH}^{+}}}
\end{aligned}
$$

and solving:

$$
\left[\mathrm{H}^{+}\right]=[\mathrm{B}]=x=\sqrt{K_{\mathrm{a}} \mathrm{C}_{\mathrm{BH}^{+}}} \quad \text { Equation } 3.2
$$

This equation is the approximate solution for calculating the $\left[\mathrm{H}^{+}\right]$for any conjugate acid, BH^{+}, of the weak base, B, where $K_{\mathrm{b}}<10^{-4}$. Although it's approximate, it will be close enough (accurate to 2 or 3 significant figures) to use this MOST of the time.

