TYPE 1 (conj. ACID of a weak base)

(only the SALT of a weak base is put in solution)

For a salt, BHX, of the weak base (B) in water:

BHX (s) + $H_2O \longrightarrow BH^+ + X^-$ (100% ionization!!!, and X⁻ is some anion of a strong acid - it does nothing)

Note that BH⁺ behaves EXACTLY like a weak acid in water (a Type 1 problem for acids) and the equilibria is

 $BH^{+} + H_{2}O \implies H_{3}O^{+} + B \qquad \text{or} \qquad BH^{+} \implies H^{+} + B$ $K_{a} = \frac{[H^{+}][B]}{[BH^{+}]}$

member K_{a} for BH⁺ must be calculated from K_{b} for B: $K_{a} = \frac{K_{w}}{K_{b}}$

Now let $C_{\rm BH_{^+}}$ be the analytical concentration (label) of the conjugate acid, $BH^{\scriptscriptstyle +}$: Our Equilibrium "Chart"

	$[\mathbf{BH}^+]$	$[\mathbf{H}^{+}]$	[B]
initial	$C_{\rm BH^+}$	0	0
change	- <i>x</i>	+x	+x
final	С _{вн+} - <i>х</i>	X	x

$$K_{\rm a} = \frac{x^2}{\left(C_{\rm BH^+} - x\right)}$$
 Equation 3.1

$$K_{\rm a}C_{{\rm BH}^+} - K_{\rm a}(x) = x^2$$

$$0 = x^{2} + K_{a}(x) - K_{a}C_{BH^{+}}$$

$$[\mathrm{H}^{+}] = [\mathrm{B}] = x = \frac{-K_{\mathrm{a}} + \sqrt{K_{\mathrm{a}}^{2} + 4K_{\mathrm{a}}C_{\mathrm{BH}^{+}}}}{2}$$

This equation is the <u>exact</u> solution for calculating the $[H^+]$ for any solution made by mixing a concentration of ONLY a conjugate weak acid, BH⁺, in water.

If we are using a REASONABLE concentration for BH⁺ (somewhere between 1.0 M and 0.05 M) AND K_a is small enough (say less than 10⁻⁴) we can make the following assumption:

 $C_{BH+} - x \cong C_{BH+}$ all this is saying is that *x* is so small compared to C_{BH+} , it doesn't change it $K_a = \frac{x^2}{C_{BH^+}}$

and solving:

 $[H^+] = [B] = x = \sqrt{K_a C_{BH^+}}$ Equation 3.2

This equation is the <u>approximate</u> solution for calculating the [H⁺] for any conjugate acid, BH⁺, of the weak base, B, where $K_b < 10^{-4}$. Although it's approximate, it will be close enough (accurate to 2 or 3 significant figures) to use this MOST of the time.