# Unit 4: Electrochemistry

UNIFYING ELECTROCHEMISTRY, FREE ENERGY, & EQUILIBRIUM

## Goals for Today

1. Describe fully the relationship between electrical potential ( $\epsilon$ ) and free energy ( $\Delta G$ )

$$\Delta G = -nF\mathcal{E}$$

2. Describe fully the relationship between electrical potential (ε) and the equilibrium constant (Κ)

$$\mathcal{E}^{\circ} = \frac{0.05916}{n} \log K$$

3. Use these relationships to calculate the cell potential of a non-standard cell

$$\mathcal{E} = \mathcal{E}^{\circ} - \frac{0.05916}{n} \log Q$$

- 4. Use these relationships to fully explain the operation and purpose of a concentration cell
- 5. Be able to explain the first principles of basically everything in the chemistry universe

## Free Energy and Electrical Potential

Chemical Definition: The free energy of an electrochemical cell is proportional to the negative electrical potential and the number of electrons involved in the balanced redox reaction

$$\Delta G = -nF\mathcal{E}$$

**Chemistry World** 

Physics World

$$\dot{w} = -q \cdot \mathcal{E}$$

Physics Definition: The maximum electrical work that can be done on an electrochemical cell is proportional to the negative electrical potential and the charge the balanced redox reaction

## Conceptual Summary

1. There is a simple relationship between free energy and electrical potential:

$$\Delta G = -nF\mathcal{E}$$

2. This equation can be applied to tell us about the capacity for an electrochemical system to do work:

$$w = -q \cdot \mathcal{E}$$

- These values are ideal, meaning we are calculating the maximum electrical work, or the maximum reversible non-expansion work.
- 4. This relationship provides an effective way of determining the capacity for a chemical system to do work when we do not have a change in gas moles (no change in volume)

### REEF Question

Suppose you are sitting in a test and completely blank on the formula that relates electrical potential and K (which we are about to discuss), and all you can remember is the equation from unit 2:

$$\Delta G^{\circ} = -RT \ln K$$

Can you derive the formula that you need?

A. 
$$\mathcal{E}^{\circ} = -\frac{RT}{nF} \log K$$

C. 
$$\mathcal{E}^{\circ} = \frac{RT}{nF} \ln K$$
 E. None of the above

B. 
$$\mathcal{E}^{\circ} = \frac{nF}{RT} \log K$$

D. 
$$\mathcal{E}^{\circ} = -\frac{RT}{nF} \ln K$$

### Electrical Potential and Equilibrium

Now that we know the relationship between electrical potential and free energy:

$$\Delta G^{\circ} = -nF \mathcal{E}^{\circ}$$

$$\Delta G^{\circ} = -RT \ln K$$

We can very clearly connect the dots between free energy and the equilibrium constant, K:

$$\mathcal{E}^{\circ} = \frac{RT}{nF} \ln K$$

$$\mathcal{E}^{\circ} = \frac{0.05916}{n} \log K$$

## Conceptual Summary: Standard Cells

| Electrical Potential ε° | Free Energy<br>ΔG° | Equilibrium Constant<br>K | Spontaneous? |
|-------------------------|--------------------|---------------------------|--------------|
| Positive                | Negative           | Greater than 1            | Yes          |
| Negative                | Positive           | Less than 1               | No           |
|                         |                    |                           |              |

## Conceptual Summary: Standard Cells



### REEF Question

What is the maximum non-expansion work that can be done by the system of the following cell at standard conditions?

Answer in units of kJ/mol. Round to the nearest whole number.

Answer = 
$$\_$$
 kJ/mol

| Cl2              | + | 2e-             | $\rightleftharpoons$ | 2Cl              | 121        | +1.36 V |
|------------------|---|-----------------|----------------------|------------------|------------|---------|
| Ag*              | + | 1e <sup>-</sup> | $\rightleftharpoons$ | Ag               |            | +0.80 V |
| Fe <sup>3+</sup> | + | 1e <sup>-</sup> | $\rightleftharpoons$ | Fe <sup>2+</sup> | incre      | +0.77 V |
| Cu <sup>2+</sup> | + | 2e-             | $\rightleftharpoons$ | Cu               | increasing | +0.34 V |
| 2H⁺              | + | 2e              | $\Rightarrow$        | H <sub>2</sub>   | strength   | 0.00 V  |
| Fe <sup>3+</sup> | + | 3e-             | $\Longrightarrow$    | Fe               |            | -0.04 V |
| Pb <sup>2+</sup> | + | 2e-             | $\Longrightarrow$    | Pb               | as an      | -0.13 V |
| Fe <sup>2+</sup> | + | 2e <sup>-</sup> | $\rightleftharpoons$ | Fe               | reducing   | -0.44 V |
| Zn <sup>2+</sup> | + | 2e-             | $\rightleftharpoons$ | Zn               |            | -0.76 V |
| Al <sup>3+</sup> | + | 3e-             | $\rightleftharpoons$ | AI               | agent      | −1.66 V |

### REEF Question

At standard conditions, you can look up the half reactions of the following cell to get an electrical potential equal to -0.576V. What is the value of K?

$$Ag(s)|Ag^{+}(aq)||Cl^{-}(aq)||AgCl(s)||Ag(s)$$

- a.  $2.8 \times 10^8$
- b. 3.6 x 10<sup>-10</sup>
- c. 1.8 x 10<sup>-10</sup>
- d.  $1.8 \times 10^{10}$
- e. None of the above

Once you've answered, think about the meaning of this particular K value.

#### Non-Standard Cells Electrical Potential

You can use Q to determine the non-standard potential with the Nernst Equation:

$$\mathcal{E} = \mathcal{E}^{\circ} - \frac{RT}{nF} \ln Q$$
 or:  $\mathcal{E} = \mathcal{E}^{\circ} - \frac{0.05916}{n} \log Q$ 

What is the non-standard potential of the AgCl, H<sub>2</sub> cell when we change ONLY the chloride concentration to 8M?

- a. 0.22V
- b. -0.22V
- c. 0.27V
- d. 0.17V
- e. None of these

HINT: remember how Q works:

Q is the given concentrations (or pressures) of the products raised to the power of their coefficients divided by the reactants raised to the power of their coefficients.

### Non-Standard Cells Electrical Potential

Let's go back to our original cell at standard conditions. Now we modify only the [H<sup>+</sup>] to get a voltage reading of 0.5454V. What is the pH of the anode compartment?

Answer using the following format: \_ . \_ \_

#### The Concentration Cell

A concentration cell is simply a cell that has identical half-reactions and achieves a positive cell potential by having a favorable Q-value in the Nernst Equation.

$$reduction : Cu^{2+} + 2e^{-} \rightarrow Cu (0.34V)$$

oxidation: Cu 
$$\rightarrow Cu^{2+} + 2e^{-}(-0.34V)$$

$$\varepsilon_{\text{cell}}^{\circ} = \varepsilon_{\text{reduction}}^{\circ} + \varepsilon_{\text{oxidation}}^{\circ}$$

$$\varepsilon_{\text{cell}}^{\circ} = 0V$$

$$\mathcal{E} = \mathcal{E} - \frac{0.05916}{n} \log Q$$

You can maximize **E** by minimizing Q:

- 1. Increase the concentration of Cu<sup>2+</sup> in the cathode compartment
- 2. Decreasing the concentration of Cu<sup>2+</sup> in the anode compartment

## Goals for Today

1. Describe fully the relationship between electrical potential ( $\epsilon$ ) and free energy ( $\Delta G$ )

$$\Delta G = -nF\mathcal{E}$$
  $\Delta G^{\circ} = -nF\mathcal{E}^{\circ}$ 

2. Describe fully the relationship between electrical potential (ε) and the equilibrium constant (Κ)

$$\mathcal{E}^{\circ} = \frac{RT}{nF} \ln K \qquad \qquad \mathcal{E}^{\circ} = \frac{0.05916}{n} \log K$$

3. Use these relationships to calculate the cell potential of a non-standard cell

$$\mathcal{E} = \mathcal{E}^{\circ} - \frac{RT}{nF} \ln Q \qquad \qquad \mathcal{E} = \mathcal{E}^{\circ} - \frac{0.05916}{n} \log Q$$

- 4. Use these relationships to fully explain the operation and purpose of a concentration cell: we can change the concentrations of a standard cell to create a cell potential when we have identical species in the half reactions
- 5. Be able to explain the first principles of basically everything in the chemistry universe: use the triforce

yes, then are "ideal" - friction · Enusy loca provided (96,485)

Remember: W=-PAV=-AnRT=-nRAT

L7 needed gov moles, now we don't

Non-expansion work

Conclusions:

Anode:  $Ag(s) - 7 Ag^{+} + e^{-}$ (athode:  $Ag(s)^{+} = 7 Ag(s) + C1^{-}$ Overall:  $Ag(s) - 7 Ag^{+} + C1^{-}$  $E^{\circ} = -6.576 V$ 

E'= RTINK OR E= 0.05916 log K

K= e e or K= 10 80.05916

n=1, R=8.314, T=298K

-> MX -> M+ X- KSP KA, KW, KB

$$\mathcal{E}_{cell}^{\circ} = \mathcal{E}_{celhode}^{\circ} - \mathcal{E}_{anode}^{\circ}$$
 $0.40V = -0.04V - (-0.44V)$ 

P+ H2(9) H+ (m) (CI (m) Agclos) Ag(s) Cathode, +0.22V anode, OV Overall reaction: 2 Ag Cl(s) + Hz(y) = 2 Ag (s) + 2 Cl(m) + 2 Hing E = 0.22V = everything is stel. How does E change when: (1) Increase [CI-] to 8M EV (2) Increase amount of Ag (s) Esame (3) Increase PH2 to 8 atm ET (4) Run battery /cell For 24 hours El [C1-]2[H+]2