last name

first name

signature

McCord CH302 50375 / 50380

Exam 2

Spring 2017

Please also refer to the Periodic Table handout included with your exam bundle. Many conversion factors and physical constants are available there.

acid	formula	K_{a}
acetic	$\mathrm{CH_{3}COOH}$	1.8×10^{-5}
benzoic	C_6H_5COOH	6.4×10^{-5}
butanoic	C_3H_7COOH	1.5×10^{-5}
chloroacetic	$CClH_2COOH$	1.4×10^{-3}
chlorous	$HClO_2$	1.2×10^{-2}
hydrocyanic	HCN	4.9×10^{-10}
hypobromous	HBrO	2.8×10^{-9}
hypochlorous	HClO	3.5×10^{-8}
nitrous	HNO_2	5.6×10^{-4}

base	formula	$K_{ m b}$
ammonia	NH_3	1.8×10^{-5}
aniline	$C_6H_5NH_2$	4.3×10^{-10}
ethylamine	$C_2H_5NH_2$	5.6×10^{-4}
hydrazine	N_2H_4	1.7×10^{-6}
methylamine	CH_3NH_2	4.4×10^{-4}
propylamine	$C_3H_7NH_2$	3.7×10^{-4}
triethylamine	$(C_2H_5)_3N$	5.6×10^{-4}
trimethylamine	$(CH_3)_3N$	6.5×10^{-5}
pyridine	C_5H_5N	1.8×10^{-9}

polyprotic acid	formula	K_{a}
phosphoric	H ₃ PO ₄	1) 7.5×10^{-3} 2) 6.2×10^{-8} 3) 4.8×10^{-13}
sulfurous	H_2SO_3	1) 1.5×10^{-2} 2) 1.0×10^{-7}

$$K_{
m w}=1.0\times 10^{-14}$$

$$R=8.314~{
m J/mol~K}$$

$$R=0.08206~{
m L~atm~/~mol~K}$$

$$1~{
m gal}=3.785~{
m L}$$

NOTE: Please keep your Exam copy intact (all pages still stapled). You must turn in your exam copy, bubble sheet, and scratch paper.

This print-out should have 30 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

001 4.0 points

For the reaction

$$Br_2(g) \rightleftharpoons 2 Br(g)$$
,

 $\Delta G_{\rm r}^{\circ} = +161.69 \text{ kJ} \cdot \text{mol}^{-1} \text{ at } 25^{\circ}\text{C}$. What is the value of $K_{\rm p}$ for this reaction?

- 1. 1.83×10^{-30}
- **2.** 0.0378
- 3. 4.54×10^{-29}
- 4. 1.12×10^{-27}

002 2.0 points

The conjugate acid of HPO_4^{2-} is

- 1. $H_2PO_4^-$
- **2.** H₃PO₄
- **3.** HPO_4^{2-}
- **4.** PO_4^{3-}
- **5.** H⁺

003 3.0 points

Given the hypothetical reaction below, predict what will happen when 1.0 mol of B(g) and 2.0 mol of C(s) are placed into an evacuated container.

$$A(g) \rightleftharpoons B(g) + 2C(s)$$

- 1. ΔG° will decrease until $\Delta G^{\circ} = 0$.
- 2. Nothing; the products are already formed, so no reaction occurs.
 - **3.** Q will increase until Q = K.
 - **4.** Q will decrease until Q = K.

004 4.0 points

The equilibrium constant for the reaction

$$2 SO_2(g) + O_2(g) \rightleftharpoons 2 SO_3(g)$$

has the value $K = 4.2 \times 10^{24}$ at 300 K. Find the value of K for the reaction

$$3 \operatorname{SO}_2(g) + \frac{3}{2} \operatorname{O}_2(g) \rightleftharpoons 3 \operatorname{SO}_3(g)$$

at the same temperature.

- 1. 8.6×10^{36}
- **2.** 2.0×10^{12}
- 3. 7.0×10^{23}
- **4.** 7.4×10^{73}
- **5.** 1.8×10^{49}

005 3.0 points

What is the pH of a 0.047 M solution of HCN?

- **1.** 4.82
- **2.** 9.31
- **3.** 4.65
- **4.** 5.19
- **5.** 5.32
- **6.** 6.33

006 3.0 points

An olympic sized swimming pool has a volume of about 700 thousand gallons. Let's assume the pool is unbuffered and currently has a pH of 9.33 which is a bit high for swimming. Calculate how many gallons of muratic acid (aka: 10 M hydrochloric acid) will it take to adjust the pool back to neutrality?

1. 3.0 gal

- **2.** 1.5 gal
- **3.** 1.0 gal
- **4.** 2.0 gal
- **5.** 2.5 gal
- **6.** >> 5 gal

007 3.0 points

Write the reaction quotient for

$$4 \text{ Bi(s)} + 3 \text{ O}_2(g) \rightarrow 2 \text{ Bi}_2 \text{O}_3(s)$$

1.
$$Q = P_{O_2}^3$$

2.
$$Q = \frac{2P_{\text{Bi}_2\text{O}_3}}{4P_{\text{Bi}} 3P_{\text{O}_2}}$$

3.
$$Q = \frac{P_{\text{Bi}_2\text{O}_3}^2}{P_{\text{Bi}}^4 P_{\text{O}_2}^3}$$

4.
$$Q = \frac{P_{\text{Bi}_2\text{O}_3}^2}{P_{\text{Ri}}^4}$$

5.
$$Q = \frac{1}{P_{O_2}^3}$$

008 3.0 points

Bromothymol blue is an important indicator because it changes color around a neutral pH. It is yellow when protonated and blue when deprotonated. The full range of color change occurs between pH = 5.5 and pH = 7.5.

A few drops of bromothymol blue are placed in an unknown solution. The solution turns pure yellow. What is the BEST conclusion to make about this sample?

- 1. The solution is within a range of pH = 5.5 to pH = 6.5
- **2.** The solution is within a range of pH = 5.5 to pH = 7.5
 - **3.** The solution has a pH less than 5.5
 - 4. The solution has a pH = 7

- 5. The solution must be extremely acidic
- **6.** The solution must be extremely basic
- 7. The solution has a pH greater than 7.5

009 3.0 points

A reaction is at equilibrium and then the entire mixture is compressed to half the original volume. As expected, the pressure initially doubles, but then falls slightly to a lower pressure. Which of the five generic reactions listed is the only one capable of this response?

- 1. $B(g) \rightleftharpoons Z(g)$
- 2. $A(g) + C(g) \rightleftharpoons 3D(g)$
- 3. $A(g) + B(g) \rightleftharpoons 2C(g)$
- 4. $2W(g) + X(g) \rightleftharpoons Y(g) + 2Z(g)$
- 5. $C(g) + J(s) \rightleftharpoons Y(g)$

010 3.0 points

Consider the reaction

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

At room temperature, K is approximately 2×10^4 , but at a higher temperature K is substantially smaller. Which of the following is true?

- 1. The reaction is endothermic.
- **2.** At the higher temperature, more $CH_3OH(g)$ is produced.
 - **3.** The reaction is exothermic.
- **4.** The reaction becomes spontaneous at higher temperatures.

011 4.0 points

What is the concentration of H_3O^+ ions in a 0.10 M solution of $Ba(OH)_2$ at 25°C?

1.
$$2.5 \times 10^{-13} \text{ M}$$

- **2.** $5.0 \times 10^{-14} \text{ M}$
- **3.** None of the other answers is correct.
- **4.** $1.0 \times 10^{-13} \text{ M}$
- 5. $1.0 \times 10^{-1} \text{ M}$

012 4.0 points

A 500 mL sample of 0.50 M hypochlorous acid, HOCl, was titrated to the equivalence point with 0.50 M NaOH solution. What is the pH of the solution at the equivalence point?

- **1.** 3.57
- **2.** 10.43
- **3.** 3.20
- **4.** 10.82
- **5.** 7.00

013 4.0 points

List the the following solution species in order of increasing base strength (weakest base to strongest base).

$$CN^{-}$$
 $(C_2H_5)_3N$ N_2H_4 BrO^{-}

- 1. $(C_2H_5)_3N$ BrO⁻ N_2H_4 CN⁻
- **2.** $CN^ N_2H_4$ $BrO^ (C_2H_5)_3N$
- 3. $(C_2H_5)_3N$ $CN^ BrO^ N_2H_4$
- **4.** N_2H_4 BrO⁻ CN⁻ (C_2H_5)₃N
- **5.** $(C_2H_5)_3N$ BrO⁻ $CN^ N_2H_4$
- **6.** N_2H_4 $CN^ BrO^ (C_2H_5)_3N$
- 7. BrO⁻ $(C_2H_5)_3N$ N_2H_4 CN^-
- **8.** $CN^ N_2H_4$ $(C_2H_5)_3N$ BrO^-

014 4.0 points

Chlorinating the terminal carbon of acetic acid makes the molecule more acidic. What is the pH of a $0.020~\mathrm{M}$ chloroacetic acid (CClH₂COOH) solution?

- **1.** 3.11
- **2.** 2.33
- **3.** 2.28
- **4.** 2.80
- **5.** 12.22
- **6.** 1.70

015 4.0 points

Note: The K_p given in this problem is based on bar, not atm. Work the problem in bar.

Consider the following decomposition reaction at 700 K.

$$2 \operatorname{CaSO}_4(s) \rightarrow 2 \operatorname{CaO}(s) + 2 \operatorname{SO}_2(g) + \operatorname{O}_2(g)$$

If $K_p = 0.032$ at this temperature, what will be the equilibrium overall pressure starting from pure CaSO₄(s)?

- **1.** 0.40 bar
- **2.** 0.20 bar
- **3.** 0.60 bar
- **4.** 0.011 bar
- **5.** 0.22 bar

016 3.0 points

You have a 1.5 M solution of methylamine, CH₃NH₂. You expect the concentration of methylammonium ion, CH₃NH₃⁺ in this solution to be

- 1. Slightly greater than 1.5 M
- 2. Much greater than 1.5 M
- **3.** 1.5 M

- 4. Much lower than 1.5 M
- **5.** Slightly lower than 1.5 M

017 3.0 points

Which response identifies the statements true of buffer solutions?

- A buffer solution could consist of equal concentrations of ammonia and ammonium bromide.
- II) A buffer solution could consist of equal concentrations of perchloric acid (HClO₄) and sodium perchlorate.
- III) A buffer solution will change only slightly in pH upon addition of small amounts of acid or base.
- IV) In a buffer solution containing benzoic acid (C_6H_5COOH) and sodium benzoate (NaC_6H_5COO) the species that reacts with added hydroxide ion is the benzoate ion.
 - 1. II, III
 - 2. Another combination
 - **3.** I, III
 - **4.** I, IV
 - **5.** II, III, IV

018 4.0 points

Consider the following reaction

$$A(g) + B(g) \rightleftharpoons 2C(g)$$

where equal partial pressures of A and B gases are put into a reaction vessel. After equilibrium is established, it is found that 80% of A and B have reacted. What is the value for K for this reaction?

- **1.** 4
- **2.** 16

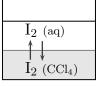
- **3.** 25
- **4.** 80
- **5.** 36
- **6.** 1
- **7.** 64

019 4.0 points

Which of the following chemical species would you expect to be the predominant form of sulfurous acid in a solution with a pH of 9?

- 1. HSO_{3}^{-}
- **2.** $H_3SO_3^+$
- 3. H_2SO_3
- 4. SO_3^{2-}

020 3.0 points


Solution A has a H⁺ concentration of 10⁻⁵ M. Solution B has a H⁺ concentration of 10⁻³ M. Which one has a lower pH, and which one contains more OH⁻ ions?

- 1. B; B
- **2.** B; A
- **3.** A; B
- 4. A; A

021 4.0 points

A special type of equilibrium is between two different solvents for the same solute. In this case the solute is iodine (I_2) . Iodine is more soluble in carbon tetrachloride (CCl_4) than in water.

Water and CCl₄ are immiscible and separate into 2 distinct liquid phases with the less dense water on top (see figure).

The I₂ will reach equilibrium across the phase

boundary and the equilibrium constant, K_c can be determined.

The iodine is initially only in the aqueous solution at a concentration of 1.2×10^{-3} M. After the CCl₄ is added, and the system reaches equilibrium, the concentration in the aqueous phase has dropped to 1.6×10^{-5} M. Calculate the equilibrium constant, $K_{\rm c}$ for this partitioning between the two phases. Specifically for

$$I_2(aq) \rightleftharpoons I_2(CCl_4)$$

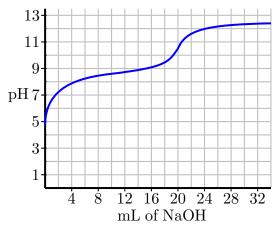
- 1. 7.4×10^{1}
- **2.** 1.4×10^2
- 3. 9.3×10^1
- 4. 6.2×10^4
- 5. 1.4×10^{-2}

022 3.0 points

As a reaction proceeds to the equilibrium state at constant temperature, which of the following statements is correct?

- 1. The value of ΔG° is changing until it equals zero.
- **2.** The value of Q is changing and headed towards the minimum value possible.
- **3.** The overall free energy of the system is decreasing until a minimum is reached.
- **4.** The reaction will proceed such that the activities of the products equals the activities of the reactants.
- **5.** The value of K will change until it equals one.

023 3.0 points


You mix 10 mL of 3M LiOH with 10 mL of 3M $\rm HNO_2$. The final solution will be

1. Neutral

- 2. Acidic
- 3. Basic

024 (part 1 of 3) 3.0 points

A sample of 100 mL of a weak acid (HA) solution was titrated with 0.065 M NaOH. The pH curve for this titration is shown.

What is the concentration of the original weak acid solution (the 100 mL)?

- **1.** 0.33 M
- **2.** 0.065 M
- **3.** 0.013 M
- **4.** 0.016 M
- **5.** 0.010 M

025 (part 2 of 3) 2.0 points

What is the pH at the equivalence point of this titration?

- **1.** 7.00
- **2.** 8.6
- **3.** 10.6
- **4.** 9.2
- **5.** 12.1

026 (part 3 of 3) 3.0 points

Which of these acids and bases could be the solution that was titrated?

- 1. hypochlorous acid
- 2. hypoiodous acid
- 3. chlorous acid
- 4. hypobromous acid
- 5. nitrous acid
- 6. butanoic acid

027 3.0 points

In the following equation, water is acting as a(n)

$$C_6H_5COOH(aq) + H_2O(l) \rightleftharpoons$$

 $C_6H_5COO^-(aq) + H_3O^+(aq)$

- 1. Neither
- 2. Base
- 3. Acid

028 4.0 points

A buffer was prepared by mixing 0.40 moles of methylamine (CH₃NH₂) and 0.40 moles of methylammonium chloride (CH₃NH₃Cl) to form an aqueous solution with a total volume of 800 mL. After that solution came to equilibrium, 0.10 moles of HBr was added to the buffer solution. What is the new pH of the solution?

- **1.** 5.47
- **2.** 10.64
- **3.** 3.13
- **4.** 10.87
- **5.** 3.36

- **6.** 10.42
- **7.** 3.58

029 3.0 points

The ΔH° for the autoionization of water is 55.7 kJ/mol. Which of the following is/are true regarding the autoionization of pure water?

- I) The concentration of H_3O^+ will be greater at $37^{\circ}C$
- II) $[OH^-] = [H_3O^+]$ at all temperatures
- III) $K_{\rm w}$ is equal to 1 x 10^{-14} at all temperatures
- IV) The concentration of ${\rm H_3O^+}$ will be less at $37^{\circ}{\rm C}$
 - 1. II and IV
 - 2. II only
 - 3. I and II
 - 4. III only
 - 5. I, II, and III
 - **6.** II, II, and IV

030 4.0 points

What is the percent ionization for a 0.50 M solution of trimethylamine, $(CH_3)_3N$?

- **1.** 100%
- **2.** 4.6%
- **3.** 0.57%
- **4.** 1.1%
- **5.** 2.1%
- **6.** 1.8%