last name first name signature McCord CH302 50375 / 50380 # Exam 2 Spring 2017 Please also refer to the Periodic Table handout included with your exam bundle. Many conversion factors and physical constants are available there. | acid | formula | K_{a} | |--------------|-----------------------|-----------------------| | acetic | $\mathrm{CH_{3}COOH}$ | 1.8×10^{-5} | | benzoic | C_6H_5COOH | 6.4×10^{-5} | | butanoic | C_3H_7COOH | 1.5×10^{-5} | | chloroacetic | $CClH_2COOH$ | 1.4×10^{-3} | | chlorous | $HClO_2$ | 1.2×10^{-2} | | hydrocyanic | HCN | 4.9×10^{-10} | | hypobromous | HBrO | 2.8×10^{-9} | | hypochlorous | HClO | 3.5×10^{-8} | | nitrous | HNO_2 | 5.6×10^{-4} | | base | formula | $K_{ m b}$ | |----------------|---------------|-----------------------| | ammonia | NH_3 | 1.8×10^{-5} | | aniline | $C_6H_5NH_2$ | 4.3×10^{-10} | | ethylamine | $C_2H_5NH_2$ | 5.6×10^{-4} | | hydrazine | N_2H_4 | 1.7×10^{-6} | | methylamine | CH_3NH_2 | 4.4×10^{-4} | | propylamine | $C_3H_7NH_2$ | 3.7×10^{-4} | | triethylamine | $(C_2H_5)_3N$ | 5.6×10^{-4} | | trimethylamine | $(CH_3)_3N$ | 6.5×10^{-5} | | pyridine | C_5H_5N | 1.8×10^{-9} | | polyprotic acid | formula | K_{a} | |-----------------|--------------------------------|--| | phosphoric | H ₃ PO ₄ | 1) 7.5×10^{-3}
2) 6.2×10^{-8}
3) 4.8×10^{-13} | | sulfurous | H_2SO_3 | 1) 1.5×10^{-2}
2) 1.0×10^{-7} | $$K_{ m w}=1.0\times 10^{-14}$$ $$R=8.314~{ m J/mol~K}$$ $$R=0.08206~{ m L~atm~/~mol~K}$$ $$1~{ m gal}=3.785~{ m L}$$ **NOTE:** Please keep your Exam copy intact (all pages still stapled). You must turn in your exam copy, bubble sheet, and scratch paper. This print-out should have 30 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering. ## 001 4.0 points For the reaction $$Br_2(g) \rightleftharpoons 2 Br(g)$$, $\Delta G_{\rm r}^{\circ} = +161.69 \text{ kJ} \cdot \text{mol}^{-1} \text{ at } 25^{\circ}\text{C}$. What is the value of $K_{\rm p}$ for this reaction? - 1. 1.83×10^{-30} - **2.** 0.0378 - 3. 4.54×10^{-29} - 4. 1.12×10^{-27} ## 002 2.0 points The conjugate acid of HPO_4^{2-} is - 1. $H_2PO_4^-$ - **2.** H₃PO₄ - **3.** HPO_4^{2-} - **4.** PO_4^{3-} - **5.** H⁺ #### 003 3.0 points Given the hypothetical reaction below, predict what will happen when 1.0 mol of B(g) and 2.0 mol of C(s) are placed into an evacuated container. $$A(g) \rightleftharpoons B(g) + 2C(s)$$ - 1. ΔG° will decrease until $\Delta G^{\circ} = 0$. - 2. Nothing; the products are already formed, so no reaction occurs. - **3.** Q will increase until Q = K. - **4.** Q will decrease until Q = K. #### 004 4.0 points The equilibrium constant for the reaction $$2 SO_2(g) + O_2(g) \rightleftharpoons 2 SO_3(g)$$ has the value $K = 4.2 \times 10^{24}$ at 300 K. Find the value of K for the reaction $$3 \operatorname{SO}_2(g) + \frac{3}{2} \operatorname{O}_2(g) \rightleftharpoons 3 \operatorname{SO}_3(g)$$ at the same temperature. - 1. 8.6×10^{36} - **2.** 2.0×10^{12} - 3. 7.0×10^{23} - **4.** 7.4×10^{73} - **5.** 1.8×10^{49} ## 005 3.0 points What is the pH of a 0.047 M solution of HCN? - **1.** 4.82 - **2.** 9.31 - **3.** 4.65 - **4.** 5.19 - **5.** 5.32 - **6.** 6.33 ## 006 3.0 points An olympic sized swimming pool has a volume of about 700 thousand gallons. Let's assume the pool is unbuffered and currently has a pH of 9.33 which is a bit high for swimming. Calculate how many gallons of muratic acid (aka: 10 M hydrochloric acid) will it take to adjust the pool back to neutrality? 1. 3.0 gal - **2.** 1.5 gal - **3.** 1.0 gal - **4.** 2.0 gal - **5.** 2.5 gal - **6.** >> 5 gal ## 007 3.0 points Write the reaction quotient for $$4 \text{ Bi(s)} + 3 \text{ O}_2(g) \rightarrow 2 \text{ Bi}_2 \text{O}_3(s)$$ 1. $$Q = P_{O_2}^3$$ **2.** $$Q = \frac{2P_{\text{Bi}_2\text{O}_3}}{4P_{\text{Bi}} 3P_{\text{O}_2}}$$ 3. $$Q = \frac{P_{\text{Bi}_2\text{O}_3}^2}{P_{\text{Bi}}^4 P_{\text{O}_2}^3}$$ **4.** $$Q = \frac{P_{\text{Bi}_2\text{O}_3}^2}{P_{\text{Ri}}^4}$$ 5. $$Q = \frac{1}{P_{O_2}^3}$$ # 008 3.0 points Bromothymol blue is an important indicator because it changes color around a neutral pH. It is yellow when protonated and blue when deprotonated. The full range of color change occurs between pH = 5.5 and pH = 7.5. A few drops of bromothymol blue are placed in an unknown solution. The solution turns pure yellow. What is the BEST conclusion to make about this sample? - 1. The solution is within a range of pH = 5.5 to pH = 6.5 - **2.** The solution is within a range of pH = 5.5 to pH = 7.5 - **3.** The solution has a pH less than 5.5 - 4. The solution has a pH = 7 - 5. The solution must be extremely acidic - **6.** The solution must be extremely basic - 7. The solution has a pH greater than 7.5 ## 009 3.0 points A reaction is at equilibrium and then the entire mixture is compressed to half the original volume. As expected, the pressure initially doubles, but then falls slightly to a lower pressure. Which of the five generic reactions listed is the only one capable of this response? - 1. $B(g) \rightleftharpoons Z(g)$ - 2. $A(g) + C(g) \rightleftharpoons 3D(g)$ - 3. $A(g) + B(g) \rightleftharpoons 2C(g)$ - 4. $2W(g) + X(g) \rightleftharpoons Y(g) + 2Z(g)$ - 5. $C(g) + J(s) \rightleftharpoons Y(g)$ # 010 3.0 points Consider the reaction $$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$ At room temperature, K is approximately 2×10^4 , but at a higher temperature K is substantially smaller. Which of the following is true? - 1. The reaction is endothermic. - **2.** At the higher temperature, more $CH_3OH(g)$ is produced. - **3.** The reaction is exothermic. - **4.** The reaction becomes spontaneous at higher temperatures. #### 011 4.0 points What is the concentration of H_3O^+ ions in a 0.10 M solution of $Ba(OH)_2$ at 25°C? 1. $$2.5 \times 10^{-13} \text{ M}$$ - **2.** $5.0 \times 10^{-14} \text{ M}$ - **3.** None of the other answers is correct. - **4.** $1.0 \times 10^{-13} \text{ M}$ - 5. $1.0 \times 10^{-1} \text{ M}$ ## 012 4.0 points A 500 mL sample of 0.50 M hypochlorous acid, HOCl, was titrated to the equivalence point with 0.50 M NaOH solution. What is the pH of the solution at the equivalence point? - **1.** 3.57 - **2.** 10.43 - **3.** 3.20 - **4.** 10.82 - **5.** 7.00 # 013 4.0 points List the the following solution species in order of increasing base strength (weakest base to strongest base). $$CN^{-}$$ $(C_2H_5)_3N$ N_2H_4 BrO^{-} - 1. $(C_2H_5)_3N$ BrO⁻ N_2H_4 CN⁻ - **2.** $CN^ N_2H_4$ $BrO^ (C_2H_5)_3N$ - 3. $(C_2H_5)_3N$ $CN^ BrO^ N_2H_4$ - **4.** N_2H_4 BrO⁻ CN⁻ (C_2H_5)₃N - **5.** $(C_2H_5)_3N$ BrO⁻ $CN^ N_2H_4$ - **6.** N_2H_4 $CN^ BrO^ (C_2H_5)_3N$ - 7. BrO⁻ $(C_2H_5)_3N$ N_2H_4 CN^- - **8.** $CN^ N_2H_4$ $(C_2H_5)_3N$ BrO^- ## 014 4.0 points Chlorinating the terminal carbon of acetic acid makes the molecule more acidic. What is the pH of a $0.020~\mathrm{M}$ chloroacetic acid (CClH₂COOH) solution? - **1.** 3.11 - **2.** 2.33 - **3.** 2.28 - **4.** 2.80 - **5.** 12.22 - **6.** 1.70 ## 015 4.0 points Note: The K_p given in this problem is based on bar, not atm. Work the problem in bar. Consider the following decomposition reaction at 700 K. $$2 \operatorname{CaSO}_4(s) \rightarrow 2 \operatorname{CaO}(s) + 2 \operatorname{SO}_2(g) + \operatorname{O}_2(g)$$ If $K_p = 0.032$ at this temperature, what will be the equilibrium overall pressure starting from pure CaSO₄(s)? - **1.** 0.40 bar - **2.** 0.20 bar - **3.** 0.60 bar - **4.** 0.011 bar - **5.** 0.22 bar ## 016 3.0 points You have a 1.5 M solution of methylamine, CH₃NH₂. You expect the concentration of methylammonium ion, CH₃NH₃⁺ in this solution to be - 1. Slightly greater than 1.5 M - 2. Much greater than 1.5 M - **3.** 1.5 M - 4. Much lower than 1.5 M - **5.** Slightly lower than 1.5 M ## 017 3.0 points Which response identifies the statements true of buffer solutions? - A buffer solution could consist of equal concentrations of ammonia and ammonium bromide. - II) A buffer solution could consist of equal concentrations of perchloric acid (HClO₄) and sodium perchlorate. - III) A buffer solution will change only slightly in pH upon addition of small amounts of acid or base. - IV) In a buffer solution containing benzoic acid (C_6H_5COOH) and sodium benzoate (NaC_6H_5COO) the species that reacts with added hydroxide ion is the benzoate ion. - 1. II, III - 2. Another combination - **3.** I, III - **4.** I, IV - **5.** II, III, IV ## 018 4.0 points Consider the following reaction $$A(g) + B(g) \rightleftharpoons 2C(g)$$ where equal partial pressures of A and B gases are put into a reaction vessel. After equilibrium is established, it is found that 80% of A and B have reacted. What is the value for K for this reaction? - **1.** 4 - **2.** 16 - **3.** 25 - **4.** 80 - **5.** 36 - **6.** 1 - **7.** 64 # 019 4.0 points Which of the following chemical species would you expect to be the predominant form of sulfurous acid in a solution with a pH of 9? - 1. HSO_{3}^{-} - **2.** $H_3SO_3^+$ - 3. H_2SO_3 - 4. SO_3^{2-} # 020 3.0 points Solution A has a H⁺ concentration of 10⁻⁵ M. Solution B has a H⁺ concentration of 10⁻³ M. Which one has a lower pH, and which one contains more OH⁻ ions? - 1. B; B - **2.** B; A - **3.** A; B - 4. A; A ## 021 4.0 points A special type of equilibrium is between two different solvents for the same solute. In this case the solute is iodine (I_2) . Iodine is more soluble in carbon tetrachloride (CCl_4) than in water. Water and CCl₄ are immiscible and separate into 2 distinct liquid phases with the less dense water on top (see figure). The I₂ will reach equilibrium across the phase boundary and the equilibrium constant, K_c can be determined. The iodine is initially only in the aqueous solution at a concentration of 1.2×10^{-3} M. After the CCl₄ is added, and the system reaches equilibrium, the concentration in the aqueous phase has dropped to 1.6×10^{-5} M. Calculate the equilibrium constant, $K_{\rm c}$ for this partitioning between the two phases. Specifically for $$I_2(aq) \rightleftharpoons I_2(CCl_4)$$ - 1. 7.4×10^{1} - **2.** 1.4×10^2 - 3. 9.3×10^1 - 4. 6.2×10^4 - 5. 1.4×10^{-2} ## 022 3.0 points As a reaction proceeds to the equilibrium state at constant temperature, which of the following statements is correct? - 1. The value of ΔG° is changing until it equals zero. - **2.** The value of Q is changing and headed towards the minimum value possible. - **3.** The overall free energy of the system is decreasing until a minimum is reached. - **4.** The reaction will proceed such that the activities of the products equals the activities of the reactants. - **5.** The value of K will change until it equals one. #### 023 3.0 points You mix 10 mL of 3M LiOH with 10 mL of 3M $\rm HNO_2$. The final solution will be #### 1. Neutral - 2. Acidic - 3. Basic # 024 (part 1 of 3) 3.0 points A sample of 100 mL of a weak acid (HA) solution was titrated with 0.065 M NaOH. The pH curve for this titration is shown. What is the concentration of the original weak acid solution (the 100 mL)? - **1.** 0.33 M - **2.** 0.065 M - **3.** 0.013 M - **4.** 0.016 M - **5.** 0.010 M # 025 (part 2 of 3) 2.0 points What is the pH at the equivalence point of this titration? - **1.** 7.00 - **2.** 8.6 - **3.** 10.6 - **4.** 9.2 - **5.** 12.1 # 026 (part 3 of 3) 3.0 points Which of these acids and bases could be the solution that was titrated? - 1. hypochlorous acid - 2. hypoiodous acid - 3. chlorous acid - 4. hypobromous acid - 5. nitrous acid - 6. butanoic acid # 027 3.0 points In the following equation, water is acting as a(n) $$C_6H_5COOH(aq) + H_2O(l) \rightleftharpoons$$ $C_6H_5COO^-(aq) + H_3O^+(aq)$ - 1. Neither - 2. Base - 3. Acid ## 028 4.0 points A buffer was prepared by mixing 0.40 moles of methylamine (CH₃NH₂) and 0.40 moles of methylammonium chloride (CH₃NH₃Cl) to form an aqueous solution with a total volume of 800 mL. After that solution came to equilibrium, 0.10 moles of HBr was added to the buffer solution. What is the new pH of the solution? - **1.** 5.47 - **2.** 10.64 - **3.** 3.13 - **4.** 10.87 - **5.** 3.36 - **6.** 10.42 - **7.** 3.58 ## 029 3.0 points The ΔH° for the autoionization of water is 55.7 kJ/mol. Which of the following is/are true regarding the autoionization of pure water? - I) The concentration of H_3O^+ will be greater at $37^{\circ}C$ - II) $[OH^-] = [H_3O^+]$ at all temperatures - III) $K_{\rm w}$ is equal to 1 x 10^{-14} at all temperatures - IV) The concentration of ${\rm H_3O^+}$ will be less at $37^{\circ}{\rm C}$ - 1. II and IV - 2. II only - 3. I and II - 4. III only - 5. I, II, and III - **6.** II, II, and IV #### 030 4.0 points What is the percent ionization for a 0.50 M solution of trimethylamine, $(CH_3)_3N$? - **1.** 100% - **2.** 4.6% - **3.** 0.57% - **4.** 1.1% - **5.** 2.1% - **6.** 1.8%