This print-out should have 27 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering.

001 (part 1 of 2) 10.0 points

Using oxidation and reduction half-reactions, balance the skeletal equation

$$
\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{ClO}_{3}^{-}(\mathrm{aq}) \rightarrow \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

of hydrazine with chlorate ions. The reaction takes place in basic solution. What is the smallest possible integer coefficient of NO in the balanced equation?

002 (part 2 of 2) $\mathbf{1 0 . 0}$ points
Identify the oxidizing agent in the reaction.

1. NO
2. Cl^{-}
3. ClO_{3}^{-}
4. $\mathrm{N}_{2} \mathrm{H}_{4}$

003 (part 1 of 2) 10.0 points
In the reaction
$\mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{S}_{2} \mathrm{O}_{3}^{2-}(\mathrm{aq}) \rightarrow \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{SO}_{4}^{2-}(\mathrm{aq})$
of the thiosulfate ion with chlorine gas in an acidic solution, identify the oxidizing agent.

1. SO_{4}^{2-}
2. Cl^{-}
3. Cl_{2}
4. $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$

004 (part 2 of 2) $\mathbf{1 0 . 0}$ points
Balance the equation using oxidation and reduction half-reactions. What is the smallest possible integer coefficient of Cl^{-}in the combined balanced equation?

$005 \quad 10.0$ points

Consider the half-reactions and the balanced equation for the cell reaction represented by the skeletal equation

$$
\mathrm{Mn}(\mathrm{~s})+\mathrm{Ti}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+\mathrm{Ti}(\mathrm{~s}) .
$$

What is the proper cell diagram for this reaction?

$$
\begin{aligned}
& \text { 1. } \mathrm{Ti}^{2+}(\mathrm{aq})|\mathrm{Ti}(\mathrm{~s})||\operatorname{Mn}(\mathrm{s})| \mathrm{Mn}^{2+}(\mathrm{aq}) \\
& \text { 2. } \operatorname{Ti}(\mathrm{s})\left|\mathrm{Ti}^{2+}(\mathrm{aq}) \| \mathrm{Mn}^{2+}(\mathrm{aq})\right| \operatorname{Mn}(\mathrm{s}) \\
& \text { 3. } \operatorname{Mn}(\mathrm{s})\left|\mathrm{Mn}^{2+}(\mathrm{aq}) \| \mathrm{Ti}^{2+}(\mathrm{aq})\right| \mathrm{Ti}(\mathrm{~s}) \\
& \text { 4. } \mathrm{Mn}^{2+}(\mathrm{aq})|\mathrm{Mn}(\mathrm{~s})||\mathrm{Ti}(\mathrm{~s})| \mathrm{Ti}^{2+}(\mathrm{aq})
\end{aligned}
$$

In this electrochemical cell, what is the reduction half reaction?

1. $\mathrm{Zn}^{2+}(\mathrm{aq})+2 e^{-} \rightarrow \mathrm{Zn}(\mathrm{s})$
2. $\mathrm{Zn}(\mathrm{s}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+2 e^{-}$
3. $\mathrm{Cu}^{2+}(\mathrm{aq})+2 e^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$
4. $\mathrm{Cu}(\mathrm{s}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 e^{-}$

$007 \quad 10.0$ points

What is the standard cell potential of a battery made from the half reactions
$2 \mathrm{H}^{+}+2 e^{-} \longrightarrow \mathrm{H}_{2}$
$E^{\circ}=0.00 \mathrm{~V}$
mccord (pmccord) - HW11 Electrochemistry I - mccord - (51520)
$\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 e^{-} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O} \quad E^{\circ}=+1.23 \mathrm{~V}$

1. 1.23
2. 2.46
3. -2.46
4. -1.23

$008 \quad 10.0$ points

In an electrolytic cell, the negative terminal is the (cathode/anode) and is the site of the (oxidation/reduction) half reaction.

1. cathode, oxidation
2. cathode, reduction
3. anode, reduction
4. anode, oxidation
$009 \quad 10.0$ points
In a galvanic cell,
5. electrolytes are added to carry electrons between electrodes.
6. oxidation and reduction take place at the same time but at different electrodes.
7. oxidation takes place at the cathode.
8. electrical energy is used to reverse spontaneous chemical reactions.

$010 \quad 10.0$ points

Write the half reactions and the balanced equation for the galvanic cell $\mathrm{Ag}(\mathrm{s})|\mathrm{AgCl}(\mathrm{s})| \mathrm{Cl}^{-}(\mathrm{aq})| |$

$$
\mathrm{Cl}^{-}(\mathrm{aq})\left|\mathrm{Hg}_{2} \mathrm{Cl}_{2}(\mathrm{~s})\right| \mathrm{Hg}(\ell)
$$

What is the smallest possible integer coefficient of $\mathrm{Hg}_{2} \mathrm{Cl}_{2}(\mathrm{~s})$ in the combined balanced equation?

$011 \quad 10.0$ points

Silver is plated on copper by immersing a piece of copper into a solution containing sil-
$\operatorname{ver}(\mathrm{I})$ ions. In the plating reaction, copper

1. is oxidized and is the reducing agent.
2. is reduced and is the reducing agent.
3. is reduced and is the oxidizing agent.
4. is oxidized and is the oxidizing agent.

$012 \quad 10.0$ points

What is the E^{0} for the following electrochemical cell where Zn is the cathode?
$\mathrm{Fe}\left|\mathrm{Fe}^{2+}(1.0 \mathrm{M}) \| \mathrm{Zn}^{2+}(1.0 \mathrm{M})\right| \mathrm{Zn}$
$E^{0}(\mathrm{Zn})=-0.76 \quad E^{0}(\mathrm{Fe})=-0.44$

1. +1.20
2. -1.20
3. +0.32
4. -0.32

$013 \quad 10.0$ points

Which of the metals in the list below will react with $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ to produce hydrogen gas?
$\mathrm{Na}^{+}+1 e^{-} \rightarrow \mathrm{Na}$ -2.714
$\mathrm{Cd}^{2+}+2 e^{-} \rightarrow \mathrm{Cd}$ -0.403
$\mathrm{Pb}^{2+}+2 e^{-} \rightarrow \mathrm{Pb}$
-0.126
$\mathrm{Cu}^{2+}+2 e^{-} \rightarrow \mathrm{Cu}$
$+0.337$

1. Na and Cd only
2. Na only
3. Na, Cd, and Pb only
4. $\mathrm{Na}, \mathrm{Cd}, \mathrm{Pb}$, and Cu
5. some other combination than those listed

$014 \quad 10.0$ points

Consider the voltaic cell:
$\mathrm{Pt} \mid \mathrm{Sn}^{2+}(0.10 \mathrm{M}), \mathrm{Sn}^{4+}(0.0010 \mathrm{M})$
$\| \mathrm{Ag}^{+}(0.010 \mathrm{M}) \mid \mathrm{Ag}$
$\mathrm{Sn}^{4+}+2 e^{-} \rightarrow \mathrm{Sn}^{2+} \quad E^{0}=+0.15 \mathrm{~V}$
$\mathrm{Ag}^{+}+1 e^{-} \rightarrow \mathrm{Ag}(\mathrm{s}) \quad E^{0}=+0.80 \mathrm{~V}$
The electrons flow in the external circuit from

1. Ag to Pt .
2. Pt to Ag .
3. Ag to Sn^{4+}.
4. Sn to Ag.
5. Sn^{2+} to Ag^{+}.

$015 \quad 10.0$ points

Using the standard potential tables, what is the largest approximate E^{0} value that can be achieved when two half cell reactions are combined to form a battery?

1. -6 V
2. -3 V
3. 3 V
4. 6 V

$016 \quad 10.0$ points

Consider the cell
$\mathrm{Zn}(\mathrm{s})\left|\mathrm{Zn}^{2+}(\mathrm{aq}) \| \mathrm{Cl}^{-}(\mathrm{aq})\right| \operatorname{AgCl}(\mathrm{s}) \mid \operatorname{Ag}(\mathrm{s})$
Calculate E°.

1. -0.54 V
2. -1.20 V
3. +0.54 V
4. +0.98 V
5. +1.20 V
$017 \quad 10.0$ points
Which species will oxidize Cr^{2+} but not Mn^{2+} ?
6. O_{3} in acidic medium
7. V^{3+}
8. Fe^{2+}
9. Zn^{2+}
10. Pb^{4+}

$018 \quad 10.0$ points

If the standard potentials for the couples $\mathrm{Cu}^{2+}\left|\mathrm{Cu}, \mathrm{Ag}^{+}\right| \mathrm{Ag}$, and $\mathrm{Fe}^{2+} \mid \mathrm{Fe}$ are +0.34 , +0.80 , and -0.44 V , respectively, which is the strongest reducing agent?

1. Fe^{2+}
2. Ag^{+}
3. Ag
4. Cu
5. Fe

$019 \quad 10.0$ points

In a working electrochemical cell (+ cell voltage), the cations in the salt bridge move toward the cathode.

1. True
2. False

$020 \quad 10.0$ points

For the cell diagram

$$
\mathrm{Cd}(\mathrm{~s})\left|\mathrm{CdSO}_{4}(\mathrm{aq})\right|\left|\mathrm{Hg}_{2} \mathrm{SO}_{4}\right| \mathrm{Hg}(\ell)
$$

what reaction occurs at the cathode?

1. $\mathrm{CdSO}_{4}(\mathrm{~s})+2 e^{-} \rightarrow 2 \mathrm{Cd}(\ell)+\mathrm{SO}_{4}^{2-}(\mathrm{aq})$
2. $\mathrm{Hg}_{2} \mathrm{SO}_{4}(\mathrm{~s})+2 e^{-} \rightarrow 2 \mathrm{Hg}(\ell)+\mathrm{SO}_{4}^{2-}(\mathrm{aq})$
$021 \quad 10.0$ points

What is the cathode in

\[

\]

1. $\mathrm{Mg}(\mathrm{s})$; an electrolytic cell
2. Not enough information is provided.
3. $\mathrm{Au}(\mathrm{s})$; a voltaic cell
4. $\mathrm{Mg}(\mathrm{s})$; a voltaic cell
5. $\mathrm{Au}(\mathrm{s})$ an electrolytic cell
$022 \quad 10.0$ points
Consider the half-reactions
$\mathrm{Mn}^{2+}+2 e^{-} \rightarrow \mathrm{Mn} \quad E^{0}=-1.029 \mathrm{~V}$
$\mathrm{Ga}^{3+}+3 e^{-} \rightarrow \mathrm{Ga} \quad E^{0}=-0.560 \mathrm{~V}$
$\mathrm{Fe}^{2+}+2 e^{-} \rightarrow \mathrm{Fe} \quad E^{0}=-0.409 \mathrm{~V}$
$\mathrm{Sn}^{2+}+2 e^{-} \rightarrow \mathrm{Sn} \quad E^{0}=-0.136 \mathrm{~V}$
Using the redox couples to establish a voltaic cell, which reaction would be nonspontaneous?
6. $2 \mathrm{Ga}+3 \mathrm{Sn}^{2+} \rightarrow 2 \mathrm{Ga}^{3+}+3 \mathrm{Sn}$
7. $\mathrm{Fe}^{2+}+\mathrm{Mn} \rightarrow \mathrm{Mn}^{2+}+\mathrm{Fe}$
8. $\mathrm{Sn}^{2+}+\mathrm{Mn} \rightarrow \mathrm{Sn}+\mathrm{Mn}^{2+}$
9. $2 \mathrm{Ga}^{3+}+3 \mathrm{Fe} \rightarrow 2 \mathrm{Ga}+3 \mathrm{Fe}^{2+}$
10. $\mathrm{Sn}^{2+}+\mathrm{Fe} \rightarrow \mathrm{Sn}+\mathrm{Fe}^{2+}$

$023 \quad 10.0$ points

Find the standard emf of the given cell

$$
\mathrm{Cu}(\mathrm{~s})\left|\mathrm{Cu}^{2+}(\mathrm{aq}) \| \mathrm{Au}^{+}(\mathrm{aq})\right| \mathrm{Au}(\mathrm{~s})
$$

1. -2.03 V
2. +2.03 V
3. -1.35 V

$024 \quad 10.0$ points

Which species will reduce Ag^{+}but not Fe^{2+} ?

1. H_{2}
2. V
3. Au
4. Cr
5. Pt

$025 \quad 10.0$ points

If the table of standard reduction potentials is ordered with the strongest reducing agents at the top, how are the reduction potentials ordered (from top to bottom)?

1. From most common to least common
2. From most spontaneous to least spontaneous
3. From most positive to most negative
4. From most negative to most positive

$026 \quad 10.0$ points

Which specie is the weakest reducing agent in the table of half reactions?

1. F^{-}
2. Li
3. F_{2}
4. Li^{+}

$027 \quad 10.0$ points

If the two half reactions below were used to
make an electrolytic cell, what species would be consumed at the anode?

$$
\begin{array}{lr}
\text { Half reaction } & E^{\circ} \\
\hline \mathrm{Au}^{3+}(\mathrm{aq})+3 e^{-} \longrightarrow \mathrm{Au}(\mathrm{~s}) & +1.50 \\
\mathrm{I}_{2}(\mathrm{~s})+2 e^{-} \longrightarrow 2 \mathrm{I}^{-}(\mathrm{aq}) & +0.53
\end{array}
$$

1. $\mathrm{Au}^{3+}(\mathrm{aq})$
2. $\mathrm{I}^{-}(\mathrm{aq})$
3. $\mathrm{Au}(\mathrm{s})$
4. $\mathrm{I}_{2}(\mathrm{~s})$
