This print-out should have 20 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

001 10.0 points

What is the pH of an aqueous solution that is 0.018 M $C_6H_5NH_2$ ($K_b = 4.3 \times 10^{-10}$) and $0.12 \text{ M C}_6\text{H}_5\text{NH}_3\text{Cl}?$

1.4.63 **2.** 3.81 **3.** 9.37 4.5.46 **5.** 8.54 **6.** 10.19 **7.** 4.02 8.2.87

00210.0 points

A buffer solution is made by dissolving 0.45 moles of a weak acid (HA) and 0.23 moles of KOH into 750 mL of solution. What is the pH of this buffer? $K_{\rm a} = 2.6 \times 10^{-6}$ for HA. Answer in units of pH

003 10.0 points

Which one of the following combinations is NOT a buffer solution?

004 10.0 points	6. 3.31
5. NH_3 and NH_4Br	5. 2.95
4. HBr and KBr	4. 11.21
3. CH ₃ COOH and NaCH ₃ COO	3. 10.78
2. NH_3 and $(NH_4)_2SO_4$	2. 10.69
1. HCN and NaCN	1. 11.05

Which of the following mixtures will be a

buffer when dissolved in a liter of water?

1. 0.1 mol $Ca(OH)_2$ and 0.3 mol HI

2. 0.3 mol NaCl and 0.3 mol HCl

3. $0.4 \mod NH_3 \mod 0.4 \mod HCl$

4. 0.2 mol HBr and 0.1 mol NaOH

5. 0.2 mol HF and 0.1 mol NaOH

00510.0 points

What is the equilibrium pH of a solution which is initially mixed at 0.200 M in formic acid and 0.00500 M in formate ion? $K_{\rm a} = 1.8 \times 10^{-4}$ for formic acid.

1. 2.14

2. None of the other answers is correct

3. 11.86

4.4.35

5. 2.40

6. 5.34

006 10.0 points

What is the pH of a solution which is 0.600 M in dimethylamine ((CH₃)₂NH) and 0.400 M in dimethylamine hydrochloride $((CH_3)_2NH_2^+Cl^-)?$ K_b for dimethylamine = 7.4×10^{-4} .

- 59
- 8

7.10.87

007 10.0 points

What would be the final pH if 0.0100 moles of solid NaOH were added to 100 mL of a buffer solution containing 0.600 molar formic acid (ionization constant = 1.8×10^{-4}) and 0.300 molar sodium formate?

1. 3.44

2. 4.05

3. 3.84

4. None of these

5. 3.65

008 10.0 points

A buffer was prepared by mixing 0.200 mole of ammonia $(K_{\rm b} = 1.8 \times 10^{-5})$ and 0.200 mole of ammonium chloride to form an aqueous solution with a total volume of 500 mL. To 250 mL of this solution was added 50.0 mL of 1.00 M HCl. What is the pH of this solution?

1. 9.35

2. 8.38

3. 7.87

4.8.53

5. 8.18

6. 8.78

7. 9.73

009 10.0 points

A solution is 0.30 M in NH₃. What concentration of NH₄Cl would be required to achieve a buffer solution with a final pH of 9.0? $K_{\rm b} = 1.8 \times 10^{-5}$ for NH₃.

1. 0.10 M

2.	0.30	М
3.	0.45	М
4.	0.20	М

5. 0.54 M

010 10.0 points

What is the pH at the half-stoichiometric point for the titration of 0.22 M HNO₂(aq) with 0.01 M KOH(aq)? For HNO₂, $K_{\rm a} = 4.3 \times 10^{-4}$. **1.** 3.37

2. 2.01

3. 7.00

4. 2.16

5. 2.31

011 10.0 points

For the titration of 50.0 mL of 0.020 M aqueous salicylic acid with 0.020 M KOH(aq), calculate the pH after the addition of 55.0 mL of KOH(aq). For salycylic acid, $pK_a = 2.97$.

1. 10.98		
2. 11.26		
3. 12.30		
4. 7.00		
5. 12.02		

012 10.0 points

Consider the titration of 50.0 mL of 0.0200 M HClO(aq) with 0.100 M NaOH(aq). What is the formula of the main species in the solution after the addition of 10.0 mL of base?

1. $HClO_2$

2. ClO_2

3. ClOH

4. NaOH

5. ClO⁻

013 10.0 points

50.0 mL of 0.0018 M aniline (a weak base) is titrated with 0.0048 M HNO₃. How many mL of the acid are required to reach the equivalence point?

1.133 mL

2. 18.8 mL

3. Need to know the $K_{\rm b}$ of aniline.

4. Bad titration since HNO_3 is not a strong acid.

5. 4.21 mL

014 10.0 points

When we titrate a weak base with a strong acid, the pH at the equivalence point will be

1. pH > 7.

2. pH < 7.

3. pH = 7.

015 10.0 points

What is the pH at the equivalence point in the titration of 10.0 mL of 0.31 M HZ with 0.200 M NaOH? $K_{\rm a} = 3.4 \times 10^{-7}$ for HZ.

016 (part 1 of 2) 10.0 points

What is the pH at the equivalence point of this titration?

1. 4.23	
2. 8.49	
3. 6.36	
4. 10.25	
5. 2.62	
6. 5.08	
7. 3.43	

017 (part 2 of 2) 10.0 points What is the pK_a of this acid?

1. 6.36
2. 3.43
3. 5.08
4. 10.25
5. 2.62
6. 8.49

7. 4.23

018 10.0 points

The acid form of an indicator is yellow and its anion is blue. The $K_{\rm a}$ of this indicator is 1×10^{-5} . What will be the approximate pH range over which this indicator changes color?

1. 9 < pH < 11

2. 5 < pH < 7

3. 4 < pH < 6

4. 8 < pH < 10

5. 3 < pH < 5

019 10.0 points

The un-ionized form of an acid indicator is yellow and its anion is blue. The $K_{\rm a}$ of this indicator is 10^{-5} . What will be the color of the indicator in a solution of pH 3?

1. green

2. red

3. blue

4. yellow

5. orange

This is a structure of an aspartic acid sidechain on a polypeptide. The pK_a of aspartic acid is 3.86. If this polypeptide were in an aqueous solution with a pH of 7, the

sidechain would have what charge?

1. negative

2. neutral

3. positive

4. no way to know