This print-out should have 20 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering.

$001 \quad 10.0$ points

What is the pH of an aqueous solution that is $0.018 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\left(K_{\mathrm{b}}=4.3 \times 10^{-10}\right)$ and $0.12 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{Cl}$?

1. 4.63
2. 3.81
3. 9.37
4. 5.46
5. 8.54
6. 10.19
7. 4.02
8. 2.87
00210.0 points

A buffer solution is made by dissolving 0.45 moles of a weak acid (HA) and 0.23 moles of KOH into 750 mL of solution. What is the pH of this buffer? $K_{\mathrm{a}}=2.6 \times 10^{-6}$ for HA.

Answer in units of pH

$003 \quad 10.0$ points

Which one of the following combinations is NOT a buffer solution?

1. HCN and NaCN
2. NH_{3} and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
3. $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{NaCH}_{3} \mathrm{COO}$
4. HBr and KBr
5. NH_{3} and $\mathrm{NH}_{4} \mathrm{Br}$
$004 \quad 10.0$ points
Which of the following mixtures will be a
buffer when dissolved in a liter of water?
6. $0.1 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}$ and 0.3 mol HI
7. 0.3 mol NaCl and 0.3 mol HCl
8. 0.4 mol NH 3 and 0.4 mol HCl
9. 0.2 mol HBr and 0.1 mol NaOH
10. 0.2 mol HF and 0.1 mol NaOH

00510.0 points

What is the equilibrium pH of a solution which is initially mixed at 0.200 M in formic acid and 0.00500 M in formate ion? $K_{\mathrm{a}}=$ 1.8×10^{-4} for formic acid.

1. 2.14
2. None of the other answers is correct
3. 11.86
4. 4.35
5. 2.40
6. 5.34

00610.0 points

What is the pH of a solution which is 0.600 M in dimethylamine $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}\right)$ and 0.400 M in dimethylamine hydrochloride $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}^{+} \mathrm{Cl}^{-}\right) ? K_{\mathrm{b}}$ for dimethylamine $=$ 7.4×10^{-4}.

1. 11.05
2. 10.69
3. 10.78
4. 11.21
5. 2.95
6. 3.31
mccord (pmccord) - HW07 Buffers \& Titration - mccord - (51520)
7. 10.87
$007 \quad 10.0$ points
What would be the final pH if 0.0100 moles of solid NaOH were added to 100 mL of a buffer solution containing 0.600 molar formic acid (ionization constant $=1.8 \times 10^{-4}$) and 0.300 molar sodium formate?
8. 3.44
9. 4.05
10. 3.84
11. None of these
12. 3.65

$008 \quad 10.0$ points

A buffer was prepared by mixing 0.200 mole of ammonia ($K_{\mathrm{b}}=1.8 \times 10^{-5}$) and 0.200 mole of ammonium chloride to form an aqueous solution with a total volume of 500 mL . To 250 mL of this solution was added 50.0 mL of 1.00 M HCl . What is the pH of this solution?

1. 9.35
2. 8.38
3. 7.87
4. 8.53
5. 8.18
6. 8.78
7. 9.73

00910.0 points

A solution is 0.30 M in NH_{3}. What concentration of $\mathrm{NH}_{4} \mathrm{Cl}$ would be required to achieve a buffer solution with a final pH of $9.0 ? K_{\mathrm{b}}=1.8 \times 10^{-5}$ for NH_{3}.

1. 0.10 M
2. 0.30 M
3. 0.45 M
4. 0.20 M
5. 0.54 M

$010 \quad 10.0$ points

What is the pH at the half-stoichiometric point for the titration of $0.22 \mathrm{M} \mathrm{HNO}_{2}(\mathrm{aq})$ with $0.01 \mathrm{M} \mathrm{KOH}(\mathrm{aq})$? For $\mathrm{HNO}_{2}, K_{\mathrm{a}}=$ 4.3×10^{-4}.

1. 3.37
2. 2.01
3. 7.00
4. 2.16
5. 2.31

$011 \quad 10.0$ points

For the titration of 50.0 mL of 0.020 M aqueous salicylic acid with $0.020 \mathrm{M} \mathrm{KOH}(\mathrm{aq})$, calculate the pH after the addition of 55.0 mL of $\mathrm{KOH}(\mathrm{aq})$. For salycylic acid, $\mathrm{p} K_{\mathrm{a}}=2.97$.

1. 10.98
2. 11.26
3. 12.30
4. 7.00
5. 12.02

$012 \quad 10.0$ points

Consider the titration of 50.0 mL of 0.0200 M $\mathrm{HClO}(\mathrm{aq})$ with $0.100 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$. What is the formula of the main species in the solution after the addition of 10.0 mL of base?

1. HClO_{2}

2. ClO_{2}
3. ClOH
4. NaOH
5. ClO^{-}

01310.0 points

50.0 mL of 0.0018 M aniline (a weak base) is titrated with $0.0048 \mathrm{M} \mathrm{HNO}_{3}$. How many mL of the acid are required to reach the equivalence point?

1. 133 mL
2. 18.8 mL
3. Need to know the K_{b} of aniline.
4. Bad titration since HNO_{3} is not a strong acid.

5. 4.21 mL

$014 \quad 10.0$ points

When we titrate a weak base with a strong acid, the pH at the equivalence point will be

1. $\mathrm{pH}>7$.
2. $\mathrm{pH}<7$.
3. $\mathrm{pH}=7$.
$015 \quad 10.0$ points
What is the pH at the equivalence point in the titration of 10.0 mL of 0.31 M HZ with $0.200 \mathrm{M} \mathrm{NaOH} ? K_{\mathrm{a}}=3.4 \times 10^{-7}$ for HZ.

016 (part 1 of 2) $\mathbf{1 0 . 0}$ points

Titration Curve

What is the pH at the equivalence point of this titration?

1. 4.23
2. 8.49
3. 6.36
4. 10.25
5. 2.62
6. 5.08
7. 3.43

017 (part 2 of 2) 10.0 points
What is the $\mathrm{p} K_{\mathrm{a}}$ of this acid?

1. 6.36
2. 3.43
3. 5.08
4. 10.25
5. 2.62
6. 8.49

7. 4.23

$018 \quad 10.0$ points

The acid form of an indicator is yellow and its anion is blue. The K_{a} of this indicator is 1×10^{-5}. What will be the approximate pH range over which this indicator changes color?

1. $9<\mathrm{pH}<11$
2. $5<\mathrm{pH}<7$
3. $4<\mathrm{pH}<6$
4. $8<\mathrm{pH}<10$
5. $3<\mathrm{pH}<5$
$019 \quad 10.0$ points
The un-ionized form of an acid indicator is yellow and its anion is blue. The K_{a} of this indicator is 10^{-5}. What will be the color of the indicator in a solution of pH 3 ?
6. green
7. red
8. blue
9. yellow
10. orange

$020 \quad 10.0$ points

This is a structure of an aspartic acid sidechain on a polypeptide. The pK_{a} of aspartic acid is 3.86 . If this polypeptide were in an aqueous solution with a pH of 7 , the
sidechain would have what charge?

1. negative
2. neutral
3. positive
4. no way to know
