This print-out should have 45 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

001 10.0 points

Assume that five weak acids, identified only by numbers (1, 2, 3, 4, and 5), have the following ionization constants.

-	
	Ionization
Acid	Constant
	$K_{\rm a}$ value
1	1.0×10^{-3}
2	3.0×10^{-5}
3	2.6×10^{-7}
4	4.0×10^{-9}
5	7.3×10^{-11}

The anion of which acid is the strongest base?

4
5
3. 2
4. 3
5. 1

002 10.0 points

The term " K_a for the ammonium ion" describes the equilibrium constant for which of the following reactions?

- **1.** $NH_4^+ + H_2O \rightleftharpoons NH_3 + H_3O^+$
- **2.** $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$
- **3.** $NH_3 + H_3O^+ \rightleftharpoons NH_4^+ + H_2O$
- **4.** $\mathrm{NH}_4^+ + \mathrm{OH}^- \rightleftharpoons \mathrm{NH}_3 + \mathrm{H}_2\mathrm{O}$

5. $NH_4Cl(solid) + H_2O \rightleftharpoons NH_4^+ + Cl^-$

6. The term is misleading, because the am-

monium ion is not an acid.

003 10.0 points

If the value of $K_{\rm b}$ for pyridine is 1.8×10^{-9} , calculate the equilibrium constant for

$$\begin{array}{c} C_5H_5NH^+(aq) + H_2O(\ell) \rightarrow \\ C_5H_5N(aq) + H_3O^+(aq) \,. \end{array}$$

1. 5.6×10^{-6} **2.** 1.8×10^{-9} **3.** 1.8×10^{-16} **4.** 5.6×10^{8} **5.** -1.8×10^{-9}

004 10.0 points

Which of the following is true in pure water at any temperature?

1. $K_{\rm w}$ decreases with increasing temperature.

2. $[H_3O^+][OH^-] = 1.0 \times 10^{-14}$

3. $[H_3O^+] = [OH^-]$

4. pH = 7.0 or greater than 7.0

5. pH = 7.0

005 10.0 points Which is NOT a conjugate acid-base pair?

H₂O : OH⁻
HCl : Cl⁻
H₃SO₄⁺ : H₂SO₄
H₂ : H⁻

5. $H_2SO_4 : SO_4^{2-}$

 $\begin{array}{cc} 006 \quad 10.0 \text{ points} \\ \text{What is the conjugate acid of NO}_3^-? \end{array}$

1. NO_2^-	4. pH = 1
2. NH ₃	5. $pH = 3$
3. H ⁺	6. $pH = 500$
4. HNO ₃	7. $pH = 7$
5. NO_3^{2-}	8. $pH = 4$

$\begin{array}{c c} \hline 007 & 10.0 \text{ points} \\ \hline \\ \text{What is } [\text{H}_{3}\text{O}^{+}] \text{ when } [\text{OH}^{-}] = 3.3 \times 10^{-9} \text{ M}_{2}^{2} \end{array}$	>
1. $1.0 \times 10^{-7} \text{ M}$	

2. 3.3×10^{-9} M **3.** 3.3×10^{-5} M

6. OH⁻

- **4.** 3.0×10^{-6} M
- **5.** 6.6×10^{-5} M

008 10.0 points

What is $[OH^-]$ in a 0.0050 M HCl solution?

1. 6.6×10^{-5} M **2.** 5.0×10^{-3} M **3.** 1.0×10^{-7} M **4.** 2.0×10^{-12} M **5.** 1.0 M

009 10.0 points

Which pH represents a solution with 1000 times higher [OH⁻] than a solution with pH of 5?

1. pH = 2

2. pH = 0.005

3. pH = 8

-	
pH = 3	
$\mathrm{pH}=5000$	
pH = 7	
pH = 4	
pH = 6	

010 10.0 points

What is the pH of a $0.12 \text{ M Ba}(\text{OH})_2$ aqueous solution?

1. 1.33802

2. 8.7

9.

3. 0.619789

4. 13.3802

5. 10.0352

011 10.0 points

Hydroxylamine is a weak molecular base with $K_{\rm b} = 6.6 \times 10^{-9}$. What is the pH of a 0.0500 M solution of hydroxylamine?

1. pH = 8.93	
2. pH = 7.12	
3. pH = 3.63	
4. pH = 4.74	
5. pH = 9.26	
6. pH = 9.48	
7. $pH = 10.37$	

012 10.0 points

What is the pH of a 0.2 M solution of potassium generate (KR-COO)? $K_{\rm a}$ for the generic acid (R-COOH) is 2.7×10^{-8} .

- **2.** 7.000
- **3.** 10.565
- 4. 10.195
- **5.** 3.565
- **6.** 7.569
- **7.** 6.431
- 8.3.435
- **9.** 10.435
- **10.** 10.805

013 10.0 points

At 25° C, the pH of a water solution of a salt of a WEAK acid and a STRONG base is

- **1.** less than 7.
- 2. greater than 7.
- **3.** about 7.

4. equal to the hydrogen ion concentration.

014 10.0 points

What is the pH of a 0.16 M solution of anilinium nitrate (C₆H₅NH₃NO₃)? K_b for aniline is 4.2×10^{-10} .

Your answer must be within $\pm \ 0.4\%$

015 10.0 points

The pH of lemon juice is approximately 2.4. At this pH, the hydronium ion concentration is closest to which value?

- **1.** $2.50 \times 10^{-12} \text{ M}$
- **2.** 5.62×10^{-4} M
- **3.** 4.00×10^{-3} M

4. 250 M

016 10.0 points Which solution has the highest pH?
1. 0.1 M of KHCOO, $K_{\rm a \ HCOOH} = 1.8 \times 10^{-4}$
2. 0.1 M of KCl, $K_{\rm a HCl} = \text{very large}$
3. 0.1 M of KCH ₃ COO, $K_{\rm a \ HC_2H_3O_2} = 1.8 \times 10^{-5}$
4. 0.1 M of KNO ₂ , $K_{a \text{ HNO}_2} = 4.5 \times 10^{-4}$
5. 0.1 M of KClO, $K_{\rm a \ HClO} = 3.5 \times 10^{-8}$
017 10.0 points
What is the pH of a solution that contains
11.7 g of NaCl for every 200 mL of solution?

1. 1.0 **2.** 10^{-1} **3.** 7.0 **4.** 1.0×10^{-7}

018 10.0 points

A 0.010 M solution of a weak acid HA has a pH of 4.20. What is the pOH of the solution?

- **1.** 14.0
- **2.** None of these
- **3.** 4.20
- **4.** 7.0
- **5.** 9.80

019 10.0 points A solution has a pH of 4.35. Find the pOH.

1. 4.35

2. 9.65

3. None of these

4. 18.35

020 (part 1 of 2) 10.0 points

The pH of an aqueous solution is measured as 1.21. Calculate the $[H_3O^+]$. Answer in units of M

021 (part 2 of 2) 10.0 points

Calculate the [OH⁻]. Answer in units of M

022 10.0 points

What is the pH of a solution made by mixing 0.05 mol of NaCN with enough water to make a liter of solution?

 $K_{\rm a}$ for HCN is 4.9×10^{-10} and $K_{\rm w} = 1 \times 10^{-14}$.

023 10.0 points

Identify the list in which all salts produce a basic aqueous solution.

1. $AgNO_3$, $NaCHO_2$, CrI_3

2. NH_4Cl , $C_6H_4NH_3NO_3$, FeI_3

3. AlCl₃, $Zn(NO_3)_2$, $KClO_4$

4. CH_3NH_3Cl , KNO_3 , NaBz (sodium benzoate)

5. KCH₃COO, NaCN, KF

024 10.0 points

What is the pH in a solution made by dissolving 0.100 mole of sodium acetate (NaCH₃COO) in enough water to make one liter of solution? $K_{\rm a}$ for CH₃COOH is 1.80×10^{-5} .

1.8.87

2. 9.25

3. 5.13

4. 5.56×10^{-11}
5. 10.25
6. 5.74
7. 5.56×10^{-10}
8. 1.80×10^{-6}
9. 7.46×10^{-6}
10. 1.34×10^{-9}

. .

025 10.0 points

A 0.200 M solution of a weak monoprotic acid HA is found to have a pH of 3.00 at room temperature. What is the ionization constant of this acid?

1. 5.0×10^{-3}
2. 2.0×10^{-5}
3. 1.0×10^{-6}
4. 5.30
5. 5.0×10^{-6}
6. 1.8×10^{-5}
7. 2.0×10^{-9}

8. 1.0×10^{-3}

026 10.0 points

What is the percent ionization for a weak acid HX that is 0.40 M? $K_{\rm a} = 4.0 \times 10^{-7}$.

1. 0.00020%

2. 0.050%

3. 0.020%

4. 0.10%

5. 2.0%

	1. a salt.
027 10.0 points A 0.28 M solution of a weak acid is 3.5% ionized. What is the pH of the solution?	2. a gel.
1. 2.01	3. a colloid.
2. 1.46	4. an ion. 031 10.0 points
3. 5.25	How many moles of $Ca(OH)_2$ are needed to neutralize three moles of HCl?
4. 0.55	1. three
5. 3.17 028 10.0 points	2. 1.5
The pH of 0.010 M aniline(aq) is 8.32. What is the percentage aniline protonated?	3. four
1. 2.1%	4. eight
2. 0.021%	5. 0.5 6. two
3. 0.12%	7. six
4. 0.21%	8. one
5. 0.69%	

029 10.0 points

A 20 mL sample of 0.20 M nitric acid solution is required to neutralize 40 mL of barium hydroxide solution. What is the molarity of the barium hydroxide solution?

- **1.** 0.050 M
- $\mathbf{2.}\ 0.025\ \mathrm{M}$
- **3.** 0.100 M
- $\textbf{4.}~0.0025~\mathrm{M}$
- **5.** 0.200 M

030 10.0 points

When an acid and base neutralize each other, the products are generally water

032 10.0 points A 29.1 mL sample of a solution of RbOH is neutralized by 22.51 mL of a 2.735 M solution of HBr. What is the molarity of the RbOH

Answer in units of M

033 10.0 points

For the neutralization reaction involving HNO_3 and LiOH, how much of 2.10 M HNO_3 is needed to neutralize 22.2 L of a 4.66 M LiOH solution? The molar mass of LiOH is 23.95 g/mol. The molar mass of HNO_3 is 63.1 g/mol. The density of the HNO_3 solution is 1.06 g/mL. The density of the LiOH solution is 1.15 g/mL.

1. 0.567 g

solution?

2. 109.7 g

- **3.** 56,600 g
- **4.** 56.6 g
- **5.** 52,200 g
- **6.** 103.5 g
- **7.** 49.3 g
- **8.** 1,620,000 g

034 10.0 points

An aqueous solution is prepared with 2 moles of HCl and 1 mole of $Ca(OH)_2$. The resulting solution contains mainly of

1. water and Cl^- , H^+ , and Ca^{2+} ions.

2. water and Cl^{-} and Ca^{2+} ions.

3. water and Cl^- , H^+ , OH^- , and Ca^{2+} ions.

4. water and Cl^- , OH^- , and Ca^{2+} ions.

035 10.0 points

Assume you have a 0.4 M solution of acetic acid that is 1.3 percent ionized or dissociated. What is the pH?

2. 0.3
3. 0.4
4. 1.5
5. 4.3

036 10.0 points

Determine the total ionic equation for the reaction between HBr(aq) and $Ba(OH)_2(aq)$.

 $1.2 \mathrm{H}^+ + 2 \mathrm{OH}^- \rightarrow 2 \mathrm{H}_2 \mathrm{O}$

2. $2 \operatorname{Br}^- + \operatorname{Ba}^{2+} \to \operatorname{BaBr}_2$

3. $2 \text{HBr} + \text{Ba}(\text{OH})_2 \rightarrow \text{BaBr}_2 + 2 \text{H}_2\text{O}$

4. $2 H^+ + 2 Br^- + Ba^{2+} + 2 OH^- \rightarrow Ba^{2+} + 2 Br^- + 2 H_2O$

037 10.0 points

If aqueous acetic acid is reacted with sodium hydroxide, which of the following substances are in the net ionic equation?

1. acetate ion, hydroxide ion, hydronium ion, and water

2. acetate ion, hydronium ion, and water

3. acetic acid, hydroxide ion, acetate ion, and water

4. acetic acid, hydroxide ion, hydronium ion, acetate ion, and water

5. acetic acid, sodium ion, hydroxide ion, and acetate ion

038 10.0 points

Identify the products of the chemical equation

$$3 \operatorname{LiOH} + \operatorname{H}_3 \operatorname{PO}_4 \rightarrow$$

1. $3 \text{LiH} + (\text{OH})_3 \text{PO}_4$

2. $Li_3PO_4 + 3H_2O$

3. $3 H + 3 O_2 + H_3 Li_3$

4. $Li_{3}P + 2H_{2}O + H_{3}O_{5}$

039 10.0 points

What are the products of the following reaction?

 $Sr(OH)_2 + 2 HNO_3 \rightarrow$

1. $Sr(NO_2)_2 + 2H_2O_2$

2. $Sr(NO_3)_2 + 2H_2O$

3. $SrNO_3 + H_2O$

4. $SrH_2 + HNO_5$

040 10.0 points

Aqueous ammonia can be used to neutralize sulfuric acid (H_2SO_4) and nitric acid (HNO_3) to produce two salts extensively used as fertilizers. They are

- 1. $(NH_4)_2SO_4$ and NH_4NO_3 , respectively.
- 2. NH₄SO₄ and NH₄NO₃, respectively.
- **3.** NH_4SO_3 and NH_4OH , respectively.

4. cyanamide and cellulose nitrate, respectively.

041 10.0 points

Identify the salt that is produced from the acid-base neutralization reaction between potassium hydroxide and acetic acid (CH_3COOH) .

1. potassium cyanide

2. potassium acetate

3. potassium formate

4. potassium amide

042 10.0 points

What volume of 0.585 M $Ca(OH)_2$ would be needed to neutralize 15.8 L of 1.51 M HCl?

40.8 L
12.2 L
6.12 L
3.6.12 L
3.06 L
20.4 L

It was found that 25 mL of 0.012 M HCl neutralized 40 mL of NaOH solution. What was the molarity of the base solution?

1. 0.006 M		
2. 0.012 M		
3. 0.050 M		
4. 0.0075 M		

044 10.0 points

The pH of a solution of hydrochloric acid is 1.57. What is the molarity of the acid?

Answer in units of mol/L

045 10.0 points

How many moles of NaOH are needed to neutralize three moles of HCl?

0.5
one
six
1.5
three

- **6.** two
- 7. eight
- **8.** four