This print-out should have 45 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering.
$001 \quad 10.0$ points
Assume that five weak acids, identified only by numbers (1, 2, 3, 4, and 5), have the following ionization constants.

Acid	Ionization Constant K_{a} value
1	1.0×10^{-3}
2	3.0×10^{-5}
3	2.6×10^{-7}
4	4.0×10^{-9}
5	7.3×10^{-11}

The anion of which acid is the strongest base?

1. 4
2. 5
3. 2
4. 3
5. 1

$002 \quad 10.0$ points

The term " K_{a} for the ammonium ion" describes the equilibrium constant for which of the following reactions?

1. $\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$
2. $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
3. $\mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O}$
4. $\mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$
5. $\mathrm{NH}_{4} \mathrm{Cl}($ solid $)+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}$
6. The term is misleading, because the am-
monium ion is not an acid.

$003 \quad 10.0$ points

If the value of K_{b} for pyridine is 1.8×10^{-9}, calculate the equilibrium constant for

$$
\begin{aligned}
& \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \\
& \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) .
\end{aligned}
$$

1. 5.6×10^{-6}
2. 1.8×10^{-9}
3. 1.8×10^{-16}
4. 5.6×10^{8}
5. -1.8×10^{-9}

$004 \quad 10.0$ points

Which of the following is true in pure water at any temperature?

1. K_{w} decreases with increasing temperature.
2. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$
3. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
4. $\mathrm{pH}=7.0$ or greater than 7.0
5. $\mathrm{pH}=7.0$

$005 \quad 10.0$ points

Which is NOT a conjugate acid-base pair?

1. $\mathrm{H}_{2} \mathrm{O}: \mathrm{OH}^{-}$
2. $\mathrm{HCl}: \mathrm{Cl}^{-}$
3. $\mathrm{H}_{3} \mathrm{SO}_{4}^{+}$: $\mathrm{H}_{2} \mathrm{SO}_{4}$
4. $\mathrm{H}_{2}: \mathrm{H}^{-}$
5. $\mathrm{H}_{2} \mathrm{SO}_{4}: \mathrm{SO}_{4}^{2-}$
$006 \quad 10.0$ points
What is the conjugate acid of NO_{3}^{-}?
6. $\mathrm{NO}_{2}{ }^{-}$
7. NH_{3}
8. H^{+}
9. HNO_{3}
10. $\mathrm{NO}_{3}{ }^{2-}$
11. OH^{-}
$007 \quad 10.0$ points
What is $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$when $\left[\mathrm{OH}^{-}\right]=3.3 \times 10^{-9} \mathrm{M}$?
12. $1.0 \times 10^{-7} \mathrm{M}$
13. $3.3 \times 10^{-9} \mathrm{M}$
14. $3.3 \times 10^{-5} \mathrm{M}$
15. $3.0 \times 10^{-6} \mathrm{M}$
16. $6.6 \times 10^{-5} \mathrm{M}$

$008 \quad 10.0$ points

What is $\left[\mathrm{OH}^{-}\right]$in a 0.0050 M HCl solution?

1. $6.6 \times 10^{-5} \mathrm{M}$
2. $5.0 \times 10^{-3} \mathrm{M}$
3. $1.0 \times 10^{-7} \mathrm{M}$
4. $2.0 \times 10^{-12} \mathrm{M}$
5. 1.0 M

$009 \quad 10.0$ points

Which pH represents a solution with 1000 times higher $\left[\mathrm{OH}^{-}\right]$than a solution with pH of 5 ?

1. $\mathrm{pH}=2$
2. $\mathrm{pH}=0.005$
3. $\mathrm{pH}=8$
4. $\mathrm{pH}=1$
5. $\mathrm{pH}=3$
6. $\mathrm{pH}=5000$
7. $\mathrm{pH}=7$
8. $\mathrm{pH}=4$
9. $\mathrm{pH}=6$
$010 \quad 10.0$ points
What is the pH of a $0.12 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ aqueous solution?
10. 1.33802
11. 8.7
12. 0.619789
13. 13.3802
14. 10.0352

$011 \quad 10.0$ points

Hydroxylamine is a weak molecular base with $K_{\mathrm{b}}=6.6 \times 10^{-9}$. What is the pH of a 0.0500 M solution of hydroxylamine?

1. $\mathrm{pH}=8.93$
2. $\mathrm{pH}=7.12$
3. $\mathrm{pH}=3.63$
4. $\mathrm{pH}=4.74$
5. $\mathrm{pH}=9.26$
6. $\mathrm{pH}=9.48$
7. $\mathrm{pH}=10.37$
$012 \quad 10.0$ points
What is the pH of a 0.2 M solution of potassium generate (KR-COO)? K_{a} for the generic $\operatorname{acid}(\mathrm{R}-\mathrm{COOH})$ is 2.7×10^{-8}.
8. 10.285
9. 7.000
10. 10.565
11. 10.195
12. 3.565
13. 7.569
14. 6.431
15. 3.435
16. 10.435
17. 10.805

$013 \quad 10.0$ points

At $25^{\circ} \mathrm{C}$, the pH of a water solution of a salt of a WEAK acid and a STRONG base is

1. less than 7.
2. greater than 7 .
3. about 7 .
4. equal to the hydrogen ion concentration.

$014 \quad 10.0$ points

What is the pH of a 0.16 M solution of anilinium nitrate $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{NO}_{3}\right)$? K_{b} for aniline is 4.2×10^{-10}.

Your answer must be within $\pm 0.4 \%$

$015 \quad 10.0$ points

The pH of lemon juice is approximately 2.4. At this pH , the hydronium ion concentration is closest to which value?

1. $2.50 \times 10^{-12} \mathrm{M}$
2. $5.62 \times 10^{-4} \mathrm{M}$
3. $4.00 \times 10^{-3} \mathrm{M}$
4. 250 M
$016 \quad 10.0$ points
Which solution has the highest pH ?
5. 0.1 M of KHCOO ,
$K_{\mathrm{a} \mathrm{HCOOH}}=1.8 \times 10^{-4}$
6. 0.1 M of $\mathrm{KCl}, K_{\mathrm{a} \mathrm{HCl}}=$ very large
7. 0.1 M of $\mathrm{KCH}_{3} \mathrm{COO}$, $K_{\mathrm{a} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}=1.8 \times 10^{-5}$
8. 0.1 M of $\mathrm{KNO}_{2}, K_{\mathrm{a}_{\mathrm{HNO}_{2}}}=4.5 \times 10^{-4}$
9. 0.1 M of $\mathrm{KClO}, K_{\mathrm{a}} \mathrm{HClO}=3.5 \times 10^{-8}$

$017 \quad 10.0$ points

What is the pH of a solution that contains 11.7 g of NaCl for every 200 mL of solution?

1. 1.0
2. 10^{-1}
3. 7.0
4. 1.0×10^{-7}
$018 \quad 10.0$ points
A 0.010 M solution of a weak acid HA has a pH of 4.20 . What is the pOH of the solution?
5. 14.0
6. None of these
7. 4.20
8. 7.0
9. 9.80
$019 \quad 10.0$ points
A solution has a pH of 4.35 . Find the pOH .

$$
\text { 1. } 4.35
$$

2. 9.65
3. None of these
4. 18.35

020 (part 1 of 2) $\mathbf{1 0 . 0}$ points
The pH of an aqueous solution is measured as 1.21. Calculate the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$.

Answer in units of M
021 (part 2 of 2) 10.0 points
Calculate the $\left[\mathrm{OH}^{-}\right]$.
Answer in units of M

$022 \quad 10.0$ points

What is the pH of a solution made by mixing 0.05 mol of NaCN with enough water to make a liter of solution?
K_{a} for HCN is 4.9×10^{-10} and $K_{\mathrm{w}}=$ 1×10^{-14}.

$023 \quad 10.0$ points

Identify the list in which all salts produce a basic aqueous solution.

1. $\mathrm{AgNO}_{3}, \mathrm{NaCHO}_{2}, \mathrm{CrI}_{3}$
2. $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{3} \mathrm{NO}_{3}, \mathrm{FeI}_{3}$
3. $\mathrm{AlCl}_{3}, \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{KClO}_{4}$
4. $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl}, \mathrm{KNO}_{3}, \mathrm{NaBz}$ (sodium benzoate)

5. $\mathrm{KCH}_{3} \mathrm{COO}, \mathrm{NaCN}, \mathrm{KF}$

$024 \quad 10.0$ points

What is the pH in a solution made by dissolving 0.100 mole of sodium acetate $\left(\mathrm{NaCH}_{3} \mathrm{COO}\right)$ in enough water to make one liter of solution? $\quad K_{\mathrm{a}}$ for $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.80×10^{-5}.

1. 8.87
2. 9.25
3. 5.13
4. 5.56×10^{-11}
5. 10.25
6. 5.74
7. 5.56×10^{-10}
8. 1.80×10^{-6}
9. 7.46×10^{-6}
10. 1.34×10^{-9}

$025 \quad 10.0$ points

A 0.200 M solution of a weak monoprotic acid HA is found to have a pH of 3.00 at room temperature. What is the ionization constant of this acid?

1. 5.0×10^{-3}
2. 2.0×10^{-5}
3. 1.0×10^{-6}
4. 5.30
5. 5.0×10^{-6}
6. 1.8×10^{-5}
7. 2.0×10^{-9}
8. 1.0×10^{-3}

$026 \quad 10.0$ points

What is the percent ionization for a weak acid HX that is $0.40 \mathrm{M} ? K_{\mathrm{a}}=4.0 \times 10^{-7}$.

1. 0.00020%
2. 0.050%
3. 0.020%
4. 0.10%
5. 2.0%
\qquad

02710.0 points

A 0.28 M solution of a weak acid is 3.5% ionized. What is the pH of the solution?

1. 2.01
2. 1.46
3. 5.25
4. 0.55
5. 3.17

$028 \quad 10.0$ points

The pH of 0.010 M aniline(aq) is 8.32 .
What is the percentage aniline protonated?

1. 2.1%
2. 0.021%
3. 0.12%
4. 0.21%
5. 0.69%
$029 \quad 10.0$ points
A 20 mL sample of 0.20 M nitric acid solution is required to neutralize 40 mL of barium hydroxide solution. What is the molarity of the barium hydroxide solution?
6. 0.050 M
7. 0.025 M
8. 0.100 M
9. 0.0025 M
10. 0.200 M
$030 \quad 10.0$ points
When an acid and base neutralize each other, the products are generally water
11. a salt.
12. a gel.
13. a colloid.
14. an ion.
$031 \quad 10.0$ points
How many moles of $\mathrm{Ca}(\mathrm{OH})_{2}$ are needed to neutralize three moles of HCl ?
15. three
16. 1.5
17. four
18. eight
19. 0.5
20. two
21. six
22. one

$032 \quad 10.0$ points

A 29.1 mL sample of a solution of RbOH is neutralized by 22.51 mL of a 2.735 M solution of HBr . What is the molarity of the RbOH solution?

Answer in units of M

$033 \quad 10.0$ points

For the neutralization reaction involving HNO_{3} and LiOH , how much of $2.10 \mathrm{M} \mathrm{HNO}_{3}$ is needed to neutralize 22.2 L of a 4.66 M LiOH solution? The molar mass of LiOH is $23.95 \mathrm{~g} / \mathrm{mol}$. The molar mass of HNO_{3} is 63.1 $\mathrm{g} / \mathrm{mol}$. The density of the HNO_{3} solution is $1.06 \mathrm{~g} / \mathrm{mL}$. The density of the LiOH solution is $1.15 \mathrm{~g} / \mathrm{mL}$.

1. 0.567 g
2. 109.7 g
3. $56,600 \mathrm{~g}$
4. 56.6 g
5. $52,200 \mathrm{~g}$
6. 103.5 g
7. 49.3 g
8. $1,620,000 \mathrm{~g}$

$034 \quad 10.0$ points

An aqueous solution is prepared with 2 moles of HCl and 1 mole of $\mathrm{Ca}(\mathrm{OH})_{2}$. The resulting solution contains mainly of

1. water and $\mathrm{Cl}^{-}, \mathrm{H}^{+}$, and Ca^{2+} ions.
2. water and Cl^{-}and Ca^{2+} ions.
3. water and $\mathrm{Cl}^{-}, \mathrm{H}^{+}, \mathrm{OH}^{-}$, and Ca^{2+} ions.
4. water and $\mathrm{Cl}^{-}, \mathrm{OH}^{-}$, and Ca^{2+} ions.

$035 \quad 10.0$ points

Assume you have a 0.4 M solution of acetic acid that is 1.3 percent ionized or dissociated. What is the pH ?

1. 2.3
2. 0.3
3. 0.4
4. 1.5
5. 4.3

$036 \quad 10.0$ points

Determine the total ionic equation for the reaction between $\mathrm{HBr}(\mathrm{aq})$ and $\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})$.

$$
\text { 1. } 2 \mathrm{H}^{+}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

2. $2 \mathrm{Br}^{-}+\mathrm{Ba}^{2+} \rightarrow \mathrm{BaBr}_{2}$
3. $2 \mathrm{HBr}+\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow \mathrm{BaBr}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
4. $2 \mathrm{H}^{+}+2 \mathrm{Br}^{-}+\mathrm{Ba}^{2+}+2 \mathrm{OH}^{-} \rightarrow$

$$
\mathrm{Ba}^{2+}+2 \mathrm{Br}^{-}+2 \mathrm{H}_{2} \mathrm{O}
$$

$037 \quad 10.0$ points
If aqueous acetic acid is reacted with sodium hydroxide, which of the following substances are in the net ionic equation?

1. acetate ion, hydroxide ion, hydronium ion, and water
2. acetate ion, hydronium ion, and water
3. acetic acid, hydroxide ion, acetate ion, and water
4. acetic acid, hydroxide ion, hydronium ion, acetate ion, and water
5. acetic acid, sodium ion, hydroxide ion, and acetate ion

$038 \quad 10.0$ points

Identify the products of the chemical equation

$$
3 \mathrm{LiOH}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow
$$

$$
\text { 1. } 3 \mathrm{LiH}+(\mathrm{OH})_{3} \mathrm{PO}_{4}
$$

2. $\mathrm{Li}_{3} \mathrm{PO}_{4}+3 \mathrm{H}_{2} \mathrm{O}$
3. $3 \mathrm{H}+3 \mathrm{O}_{2}+\mathrm{H}_{3} \mathrm{Li}_{3}$
4. $\mathrm{Li}_{3} \mathrm{P}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{3} \mathrm{O}_{5}$

$039 \quad 10.0$ points

What are the products of the following reaction?

$$
\mathrm{Sr}(\mathrm{OH})_{2}+2 \mathrm{HNO}_{3} \rightarrow
$$

1. $\mathrm{Sr}\left(\mathrm{NO}_{2}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}_{2}$
2. $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$
mccord (pmccord) - HW6 Acids, Bases and Salts - mccord - (51520)
3. $\mathrm{SrNO}_{3}+\mathrm{H}_{2} \mathrm{O}$
4. $\mathrm{SrH}_{2}+\mathrm{HNO}_{5}$
$040 \quad 10.0$ points
Aqueous ammonia can be used to neutralize sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ and nitric acid $\left(\mathrm{HNO}_{3}\right)$ to produce two salts extensively used as fertilizers. They are
5. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ and $\mathrm{NH}_{4} \mathrm{NO}_{3}$, respectively.
6. $\mathrm{NH}_{4} \mathrm{SO}_{4}$ and $\mathrm{NH}_{4} \mathrm{NO}_{3}$, respectively.
7. $\mathrm{NH}_{4} \mathrm{SO}_{3}$ and $\mathrm{NH}_{4} \mathrm{OH}$, respectively.
8. cyanamide and cellulose nitrate, respectively.

$041 \quad 10.0$ points

Identify the salt that is produced from the acid-base neutralization reaction between potassium hydroxide and acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$.

1. potassium cyanide
2. potassium acetate
3. potassium formate
4. potassium amide

$042 \quad 10.0$ points

What volume of $0.585 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ would be needed to neutralize 15.8 L of 1.51 M HCl ?

1. 40.8 L
2. 12.2 L
3. 6.12 L
4. 3.06 L
5. 20.4 L

It was found that 25 mL of 0.012 M HCl neutralized 40 mL of NaOH solution. What was the molarity of the base solution?

1. 0.006 M
2. 0.012 M
3. 0.050 M
4. 0.0075 M
$044 \quad 10.0$ points
The pH of a solution of hydrochloric acid is 1.57. What is the molarity of the acid? Answer in units of mol/L

$045 \quad 10.0$ points

How many moles of NaOH are needed to neutralize three moles of HCl ?

1. 0.5
2. one
3. six
4. 1.5
5. three
6. two
7. eight
8. four
