This print-out should have 45 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering.

$001 \quad 10.0$ points

Assume that five weak acids, identified only by numbers ($1,2,3,4$, and 5), have the following ionization constants.

Acid	Ionization Constant K_{a} value
1	1.0×10^{-3}
2	3.0×10^{-5}
3	2.6×10^{-7}
4	4.0×10^{-9}
5	7.3×10^{-11}

The anion of which acid is the strongest base?

1. 4
2. 5 correct
3. 2
4. 3
5. 1

Explanation:

$002 \quad 10.0$ points

The term " K_{a} for the ammonium ion" describes the equilibrium constant for which of the following reactions?

1. $\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$correct
2. $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
3. $\mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O}$
4. $\mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$
5. $\mathrm{NH}_{4} \mathrm{Cl}($ solid $)+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}$
6. The term is misleading, because the ammonium ion is not an acid.

Explanation:

$003 \quad 10.0$ points

If the value of K_{b} for pyridine is 1.8×10^{-9}, calculate the equilibrium constant for

$$
\begin{aligned}
& \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \\
& \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) .
\end{aligned}
$$

1. 5.6×10^{-6} correct
2. 1.8×10^{-9}
3. 1.8×10^{-16}
4. 5.6×10^{8}
5. -1.8×10^{-9}

Explanation:

$004 \quad 10.0$ points

Which of the following is true in pure water at any temperature?

1. K_{w} decreases with increasing temperature.
2. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$
3. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$correct
4. $\mathrm{pH}=7.0$ or greater than 7.0
5. $\mathrm{pH}=7.0$

Explanation:

K_{w} is shown to INCREASE with increasing temperature. $\mathrm{pH}=7$ is only true when water is at $24^{\circ} \mathrm{C} .\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=K_{\mathrm{w}}$, which increases with temperature.

At high temperatures pH can be less than 7. Thus $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$is the only case that is true.

$005 \quad 10.0$ points

Which is NOT a conjugate acid-base pair?

$$
\text { 1. } \mathrm{H}_{2} \mathrm{O}: \mathrm{OH}^{-}
$$

2. $\mathrm{HCl}: \mathrm{Cl}^{-}$
3. $\mathrm{H}_{3} \mathrm{SO}_{4}^{+}: \mathrm{H}_{2} \mathrm{SO}_{4}$
4. $\mathrm{H}_{2}: \mathrm{H}^{-}$
5. $\mathrm{H}_{2} \mathrm{SO}_{4}: \mathrm{SO}_{4}^{2-}$ correct

Explanation:

Except for $\mathrm{H}_{2} \mathrm{SO}_{4}$ and SO_{4}^{2-}, the members of all of the pairs differ by one proton.

$006 \quad 10.0$ points

What is the conjugate acid of NO_{3}^{-}?

1. $\mathrm{NO}_{2}{ }^{-}$
2. NH_{3}
3. H^{+}

4. HNO_{3} correct

5. $\mathrm{NO}_{3}{ }^{2-}$
6. OH^{-}

Explanation:

Since the question asks for the conjugate acid, we can assume NO_{3}^{-}is acting as a base. This means that it is a proton acceptor. To form the conjugate acid, it accepts a H making HNO_{3}.
$007 \quad 10.0$ points
What is $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$when $\left[\mathrm{OH}^{-}\right]=3.3 \times 10^{-9} \mathrm{M}$?

1. $1.0 \times 10^{-7} \mathrm{M}$
2. $3.3 \times 10^{-9} \mathrm{M}$
3. $3.3 \times 10^{-5} \mathrm{M}$
4. $3.0 \times 10^{-6} \mathrm{M}$ correct
5. $6.6 \times 10^{-5} \mathrm{M}$

Explanation:

$\left[\mathrm{OH}^{-}\right]=3.3 \times 10^{-9} \mathrm{M}$

$$
K_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{14}
$$

$$
\begin{aligned}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] } & =\frac{K_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]} \\
& =\frac{1.0 \times 10^{14}}{3.3 \times 10^{-9}}=3.0 \times 10^{-6} \mathrm{M}
\end{aligned}
$$

$008 \quad 10.0$ points

What is $\left[\mathrm{OH}^{-}\right]$in a 0.0050 M HCl solution?

1. $6.6 \times 10^{-5} \mathrm{M}$
2. $5.0 \times 10^{-3} \mathrm{M}$
3. $1.0 \times 10^{-7} \mathrm{M}$
4. $2.0 \times 10^{-12} \mathrm{M}$ correct
5. 1.0 M

Explanation:

$\left[\mathrm{OH}^{-}\right]=0.0050 \mathrm{M}$
Since HCl is a strong acid, it completely dissociates and H^{+}is 0.0050 M .

$$
\mathrm{HCl} \rightleftharpoons \mathrm{H}^{+}+\mathrm{Cl}^{-}
$$

$$
\begin{aligned}
K_{\mathrm{w}} & =\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14} \\
{\left[\mathrm{OH}^{-}\right] } & =\frac{K_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]} \\
& =\frac{1 \times 10^{-14}}{0.0050}=2 \times 10^{-12} \mathrm{M}
\end{aligned}
$$

$009 \quad 10.0$ points

Which pH represents a solution with 1000 times higher $\left[\mathrm{OH}^{-}\right]$than a solution with pH of 5 ?

1. $\mathrm{pH}=2$
2. $\mathrm{pH}=0.005$
3. $\mathrm{pH}=8$ correct
4. $\mathrm{pH}=1$
5. $\mathrm{pH}=3$
6. $\mathrm{pH}=5000$
7. $\mathrm{pH}=7$
8. $\mathrm{pH}=4$
9. $\mathrm{pH}=6$

$$
\begin{aligned}
& \text { Explanation: } \\
& \mathrm{pH}=5 \\
& \qquad \mathrm{pOH}=14-\mathrm{pH}=14-5=9 \\
& \quad\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{pOH}}=10^{-9} \mathrm{M}
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{pOH}=14-\mathrm{pH}=14-5=9 \\
{\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{pOH}}=10^{-9} \mathrm{M}} \\
{\left[\mathrm{OH}^{-}\right]_{x}=1000\left[\mathrm{OH}^{-}\right]=\left(10^{3}\right)\left(10^{-9} \mathrm{M}\right)} \\
=10^{-6} \mathrm{M} \\
\mathrm{pOH}_{x}=-\log \left(\mathrm{OH}_{x}\right)=6 \\
\mathrm{pH}_{x}=14-\mathrm{pOH}_{x}=14-6=8
\end{gathered}
$$

What is the pH of a $0.12 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ aqueous solution?

1. 1.33802
2. 8.7
3. 0.619789

4. 13.3802 correct

5. 10.0352

Explanation:

$\left[\mathrm{Ba}(\mathrm{OH})_{2}\right]=0.15 \mathrm{M}$
$\mathrm{Ba}(\mathrm{OH})_{2}$ is a strong base which dissociates in aqueous solution to produce two moles of OH^{-}for every mole of $\mathrm{Ba}(\mathrm{OH})_{2}$, so 0.12 M $\mathrm{Ba}(\mathrm{OH})_{2}$ produces $0.24 \mathrm{M} \mathrm{OH}^{-}$.

	$\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow$	Ba^{2+}	
ini	0.12 M	0 M	$2 \mathrm{OH}^{-}$ Δ
Δ	-0.12 M	+0.12 M	$2(0.12 \mathrm{M})$
fin	0 M	+0.12 M	+0.24 M

$\mathrm{pH}=14-\mathrm{pOH}=14-(-\log 0.24)=13.3802$

Hydroxylamine is a weak molecular base with $K_{\mathrm{b}}=6.6 \times 10^{-9}$. What is the pH of a 0.0500 M solution of hydroxylamine?

1. $\mathrm{pH}=8.93$
2. $\mathrm{pH}=7.12$
3. $\mathrm{pH}=3.63$
4. $\mathrm{pH}=4.74$
5. $\mathrm{pH}=9.26$ correct
6. $\mathrm{pH}=9.48$
7. $\mathrm{pH}=10.37$

Explanation:

Hydroxylamine is a weak base, so use the equation to calculate weak base $\left[\mathrm{OH}^{-}\right]$concentration (note that this is the approximate equation. Why? Because K_{b} is very small and the concentration is reasonable) :

$$
\begin{aligned}
{\left[\mathrm{OH}^{-}\right] } & =\sqrt{K_{\mathrm{b}} C_{\mathrm{b}}} \\
& =\sqrt{\left(6.6 \times 10^{-9}\right)(0.0500)} \\
& =1.82 \times 10^{-5}
\end{aligned}
$$

After finding $\left[\mathrm{OH}^{-}\right.$, you can find pH using either method below:
A)

$$
\begin{aligned}
\mathrm{pOH} & =-\log \left(1.82 \times 10^{-5}\right)=4.74 \\
\mathrm{pH} & =14-4.74=9.26
\end{aligned}
$$

or B)

$$
\begin{aligned}
{\left[\mathrm{H}^{+}\right] } & =\frac{K_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]} \\
& =\frac{1.0 \times 10^{-14}}{1.82 \times 10^{-5}}=5.52 \times 10^{-10} \\
\mathrm{pH} & =-\log \left(5.52 \times 10^{-10}\right)=9.26
\end{aligned}
$$

$$
012 \quad 10.0 \text { points }
$$

What is the pH of a 0.2 M solution of potassium generate (KR-COO)? K_{a} for the generic $\operatorname{acid}(\mathrm{R}-\mathrm{COOH})$ is 2.7×10^{-8}.

1. 10.285
2. 7.000
3. 10.565
4. 10.195
5. 3.565
6. 7.569
7. 6.431
8. 3.435
9. 10.435 correct
10. 10.805

Explanation:

$M_{\mathrm{KR}-\mathrm{COO}}=0.2 \mathrm{M} \quad K_{\mathrm{a}}=2.7 \times 10^{-8}$
It's a salt of a weak generic acid (KA). Get it? Generic acid makes generic ions. Ha! This means you need a K_{b} for the weak base A^{-}. Use $K_{\mathrm{b}}=\frac{K_{\mathrm{w}}}{K_{\mathrm{a}}}$ and you'll get the $K_{\mathrm{b}}=3.7037 \times 10^{-7}$. You CAN use the approximation for the equilibrium which means that

$$
\begin{aligned}
& {\left[\mathrm{OH}^{-}\right]=\sqrt{K_{\mathrm{b}} \cdot C_{\mathrm{A}^{-}}}=0.000272166 \mathrm{M}} \\
& \mathrm{pH}=14-\mathrm{pOH} \\
& \quad=14+\log (0.000272166)=10.4348
\end{aligned}
$$

01310.0 points

At $25^{\circ} \mathrm{C}$, the pH of a water solution of a salt of a WEAK acid and a STRONG base is

1. less than 7 .
2. greater than 7 . correct
3. about 7 .
4. equal to the hydrogen ion concentration.

Explanation:

$014 \quad 10.0$ points

What is the pH of a 0.16 M solution of anilinium nitrate $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{NO}_{3}\right)$? K_{b} for aniline is 4.2×10^{-10}.

Your answer must be within $\pm 0.4 \%$
Correct answer: 2.70956.

Explanation:

$M_{\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{NO}_{3}}=0.16 \mathrm{M} \quad K_{\mathrm{b}}=4.2 \times 10^{-10}$
It's a salt of a weak base (BHX). This means you need a K_{a} for the weak acid BH^{+}:

$$
\begin{aligned}
K_{\mathrm{a}} & =\frac{K_{\mathrm{w}}}{K_{\mathrm{b}}} \\
& =\frac{1.0 \times 10^{-14}}{4.2 \times 10^{-10}} \\
& =2.38095 \times 10^{-5}
\end{aligned}
$$

You CAN use the approximation for the equilibrium which means that

$$
\begin{aligned}
{\left[\mathrm{H}^{+}\right] } & =\sqrt{K_{\mathrm{a}} \cdot C_{\mathrm{BH}^{+}}} \\
& =\sqrt{\left(2.38095 \times 10^{-5}\right)(0.16)} \\
& =0.0019518 \mathrm{M} \\
\mathrm{pH}= & -\log (0.0019518)=2.70956
\end{aligned}
$$

$015 \quad 10.0$ points
The pH of lemon juice is approximately 2.4. At this pH , the hydronium ion concentration is closest to which value?

1. $2.50 \times 10^{-12} \mathrm{M}$
2. $5.62 \times 10^{-4} \mathrm{M}$
3. $4.00 \times 10^{-3} \mathrm{M}$ correct
4. 250 M

Explanation:

$\mathrm{pH}=2.4$, so

$$
M_{\mathrm{H}^{+}}=10^{-2.4}=0.00398107 \mathrm{M}
$$

$016 \quad 10.0$ points
Which solution has the highest pH ?

1. 0.1 M of KHCOO ,

$$
K_{\mathrm{a} \mathrm{HCOOH}}=1.8 \times 10^{-4}
$$

2. 0.1 M of $\mathrm{KCl}, K_{\mathrm{a}} \mathrm{HCl}=$ very large
3. 0.1 M of $\mathrm{KCH}_{3} \mathrm{COO}$,
$K_{\mathrm{a} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}=1.8 \times 10^{-5}$
4. 0.1 M of $\mathrm{KNO}_{2}, K_{\mathrm{a} \mathrm{HNO}_{2}}=4.5 \times 10^{-4}$
5. 0.1 M of $\mathrm{KClO}, K_{\mathrm{a} \mathrm{HClO}}=3.5 \times 10^{-8}$ correct

Explanation:

$017 \quad 10.0$ points
What is the pH of a solution that contains 11.7 g of NaCl for every 200 mL of solution?

1. 1.0
2. 10^{-1}

3. 7.0 correct

4. 1.0×10^{-7}

Explanation:

$\mathrm{m}_{\mathrm{NaCl}}=11.7 \mathrm{~g}$

$$
V_{\text {soln }}=200 \mathrm{~mL}
$$

NaCl completely dissociates in water to give Na^{+}and Cl^{-}, neither of which hydrolyzes and so in aqueous NaCl the $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}ions result from autoionization of water.

$$
\begin{aligned}
K_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right] & =1 \times 10^{-14} \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] } & =\left[\mathrm{OH}^{-}\right]=1 \times 10^{-7}
\end{aligned}
$$

and $\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=7.0$
$018 \quad 10.0$ points
A 0.010 M solution of a weak acid HA has a pH of 4.20 . What is the pOH of the solution?

1. 14.0
2. None of these
3. 4.20
4. 7.0
5. 9.80 correct

Explanation:

$019 \quad 10.0$ points
A solution has a pH of 4.35 . Find the pOH .

1. 4.35
2. 9.65 correct
3. None of these
4. 18.35

Explanation:

$\mathrm{pH}=4.35$

$$
\mathrm{pOH}=14-\mathrm{pH}=9.65
$$

020 (part 1 of 2) 10.0 points

The pH of an aqueous solution is measured as 1.21. Calculate the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$.

Correct answer: 0.0616595 M.

Explanation:

$\mathrm{pH}=1.21$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=?
$$

$$
\begin{aligned}
\mathrm{pH} & =-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] & =-\mathrm{pH} \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] } & =\operatorname{antilog}(-\mathrm{pH}) \\
& =1 \times 10^{-\mathrm{pH}} \\
& =1 \times 10^{-1.21} \\
& =0.0616595 \mathrm{M}
\end{aligned}
$$

021 (part 2 of 2) 10.0 points

Calculate the $\left[\mathrm{OH}^{-}\right]$.
Correct answer: $1.62181 \times 10^{-13} \mathrm{M}$.

Explanation:

$\mathrm{pH}=1.21$

$$
\left[\mathrm{OH}^{-}\right]=?
$$

$$
\begin{aligned}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right] } & =1 \times 10^{-14} \mathrm{M}^{2} \\
{\left[\mathrm{OH}^{-}\right] } & =\frac{1 \times 10^{-14} \mathrm{M}^{2}}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]} \\
& =\frac{1 \times 10^{-14} \mathrm{M}^{2}}{0.0616595 \mathrm{M}} \\
& =1.62181 \times 10^{-13} \mathrm{M}
\end{aligned}
$$

$022 \quad 10.0$ points

What is the pH of a solution made by mixing 0.05 mol of NaCN with enough water to make a liter of solution?
K_{a} for HCN is 4.9×10^{-10} and $K_{\mathrm{w}}=$ 1×10^{-14}.

Correct answer: 11.0044 .

Explanation:

$$
\begin{aligned}
{\left[\mathrm{OH}^{-}\right] } & =\sqrt{K_{\mathrm{b}} C} \\
& =\sqrt{\frac{K_{\mathrm{w}}}{K_{\mathrm{a}}} C} \\
& =\sqrt{\frac{1 \times 10^{-14}}{4.9 \times 10^{-10}}(0.05)}=0.00101015
\end{aligned}
$$

$$
\begin{aligned}
{\left[\mathrm{H}^{+}\right] } & =\frac{K_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]} \\
& =\frac{1 \times 10^{-14}}{0.00101015}=9.89949 \times 10^{-12}
\end{aligned}
$$

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
$$

$$
=-\log \left(9.89949 \times 10^{-12}\right)=11.0044
$$

$023 \quad 10.0$ points

Identify the list in which all salts produce a basic aqueous solution.

1. $\mathrm{AgNO}_{3}, \mathrm{NaCHO}_{2}, \mathrm{CrI}_{3}$
2. $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{3} \mathrm{NO}_{3}, \mathrm{FeI}_{3}$
3. $\mathrm{AlCl}_{3}, \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{KClO}_{4}$
4. $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl}, \mathrm{KNO}_{3}, \mathrm{NaBz}$ (sodium benzoate)

5. $\mathrm{KCH}_{3} \mathrm{COO}$, NaCN , KF correct

Explanation:

$024 \quad 10.0$ points

What is the pH in a solution made by
dissolving 0.100 mole of sodium acetate $\left(\mathrm{NaCH}_{3} \mathrm{COO}\right)$ in enough water to make one liter of solution? $\quad K_{\mathrm{a}}$ for $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.80×10^{-5}.

1. 8.87 correct
2. 9.25
3. 5.13
4. 5.56×10^{-11}
5. 10.25
6. 5.74
7. 5.56×10^{-10}
8. 1.80×10^{-6}
9. 7.46×10^{-6}
10. 1.34×10^{-9}

Explanation:

$025 \quad 10.0$ points

A 0.200 M solution of a weak monoprotic acid HA is found to have a pH of 3.00 at room temperature. What is the ionization constant of this acid?

1. 5.0×10^{-3}
2. 2.0×10^{-5}
3. 1.0×10^{-6}
4. 5.30
5. 5.0×10^{-6} correct
6. 1.8×10^{-5}
7. 2.0×10^{-9}
8. 1.0×10^{-3}

Explanation:

$026 \quad 10.0$ points

What is the percent ionization for a weak acid HX that is $0.40 \mathrm{M} ? K_{\mathrm{a}}=4.0 \times 10^{-7}$.

1. 0.00020%
2. 0.050%
3. 0.020%
4. 0.10% correct
5. 2.0%

Explanation:

$027 \quad 10.0$ points
A 0.28 M solution of a weak acid is 3.5% ionized. What is the pH of the solution?

1. 2.01 correct
2. 1.46
3. 5.25
4. 0.55
5. 3.17

Explanation:

$M=0.28 \mathrm{M} \quad P=3.5 \%$
3.5% of the 0.28 M is ionized (contributes to pH), so

$$
\left[\mathrm{H}^{+}\right]=(0.28 \mathrm{M}) \times \frac{3.5}{100}=0.0098 \mathrm{M}
$$

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log (0.0098)=2.00877
$$

$028 \quad 10.0$ points

The pH of 0.010 M aniline (aq) is 8.32 .
What is the percentage aniline protonated?

1. 2.1%
2. 0.021% correct
3. 0.12%
4. 0.21%
5. 0.69%

Explanation:

$029 \quad 10.0$ points

A 20 mL sample of 0.20 M nitric acid solution is required to neutralize 40 mL of barium hydroxide solution. What is the molarity of the barium hydroxide solution?

1. 0.050 M correct
2. 0.025 M
3. 0.100 M
4. 0.0025 M
5. 0.200 M

Explanation:

$V_{\mathrm{HNO}_{3}}=20 \mathrm{~mL}$
$\left[\mathrm{HNO}_{3}\right]=0.20 \mathrm{M}$
$V_{\mathrm{Ba}(\mathrm{OH})_{2}}=40 \mathrm{~mL}$
The balanced equation for this neutralization reaction is

$$
2 \mathrm{HNO}_{3}+\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

We determine the moles of HNO_{3} used:

$$
\begin{aligned}
& ? \mathrm{~mol} \mathrm{HNO}_{3}= 0.020 \mathrm{~L} \text { soln } \\
& \times \frac{0.20 \mathrm{~mol} \mathrm{HNO}}{3} \\
& 1 \mathrm{~L} \mathrm{soln} \\
&= 0.0040 \mathrm{~mol} \mathrm{HNO}_{3}
\end{aligned}
$$

Using the mole ratio from the chemical equation we calculate the moles $\mathrm{Ba}(\mathrm{OH})_{2}$ needed to react with 0.0040 mol of HNO_{3} :
$? \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}=0.0040 \mathrm{~mol} \mathrm{HNO}_{3}$

$$
\begin{aligned}
& \times \frac{1 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}}{2 \mathrm{~mol} \mathrm{HNO}_{3}} \\
= & 0.0020 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}
\end{aligned}
$$

There are 0.0020 moles $\mathrm{Ba}(\mathrm{OH})_{2}$ in the 40 mL sample. Molarity is moles solute per liter of solution:

$$
\begin{aligned}
? \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2} & =\frac{0.0020 \text { moles } \mathrm{Ba}(\mathrm{OH})_{2}}{0.040 \mathrm{~L} \text { solution }} \\
& =0.050 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}
\end{aligned}
$$

$030 \quad 10.0$ points

When an acid and base neutralize each other, the products are generally water

1. a salt. correct
2. a gel.
3. a colloid.
4. an ion.

Explanation:

The general format for neutralization reactions is acid + base \rightarrow salt + water.

$031 \quad 10.0$ points

How many moles of $\mathrm{Ca}(\mathrm{OH})_{2}$ are needed to neutralize three moles of HCl ?

1. three
2. 1.5 correct
3. four
4. eight
5. 0.5
6. two
7. six
8. one

Explanation:

$n_{\mathrm{HCl}}=3 \mathrm{~mol}$
For acid base neutralization we need one mole of H^{+}for every mole of OH^{-}. Therefore the balanced equation is

$$
\begin{aligned}
2 \mathrm{HCl}+\mathrm{Ca}(\mathrm{OH})_{2} & \rightarrow \mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
? \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}= & 3 \mathrm{~mol} \mathrm{HCl} \\
& \times \frac{1 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}}{2 \mathrm{~mol} \mathrm{HCl}} \\
= & 1.5 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}
\end{aligned}
$$

$032 \quad 10.0$ points

A 29.1 mL sample of a solution of RbOH is neutralized by 22.51 mL of a 2.735 M solution of HBr . What is the molarity of the RbOH solution?

Correct answer: 2.11563 M.

Explanation:

$\begin{array}{lr}V_{\mathrm{RbOH}}=29.1 \mathrm{~mL} & V_{\mathrm{HBr}}=22.51 \mathrm{~mL} \\ {[\mathrm{HBr}]=2.735 \mathrm{M}} & {[\mathrm{RbOH}]=?}\end{array}$

$$
\mathrm{RbOH}+\mathrm{HBr} \longrightarrow \mathrm{RbBr}+\mathrm{H}_{2} \mathrm{O}
$$

$$
\begin{array}{r}
\left(\frac{2.735 \mathrm{~mol} \mathrm{HBr}}{\mathrm{~L}}\right)(22.51 \mathrm{~mL})\left(\frac{\mathrm{L}}{1000 \mathrm{~mL}}\right) \\
=0.0615649 \mathrm{~mol} \mathrm{HBr}
\end{array}
$$

$(0.0615649 \mathrm{~mol} \mathrm{HBr})\left(\frac{1 \mathrm{~mol} \mathrm{RbOH}}{1 \mathrm{~mol} \mathrm{HBr}}\right)$

$$
\times\left(\frac{1}{29.1 \mathrm{~mL}}\right)\left(\frac{1000 \mathrm{~mL}}{\mathrm{~L}}\right)
$$

$$
=2.11563 \frac{\mathrm{~mol}}{\mathrm{~L}} \mathrm{RbOH}
$$

$$
=2.11563 \mathrm{M} \mathrm{RbOH}
$$

03310.0 points

For the neutralization reaction involving HNO_{3} and LiOH , how much of $2.10 \mathrm{M} \mathrm{HNO}_{3}$ is needed to neutralize 22.2 L of a 4.66 M LiOH solution? The molar mass of LiOH is $23.95 \mathrm{~g} / \mathrm{mol}$. The molar mass of HNO_{3} is 63.1 $\mathrm{g} / \mathrm{mol}$. The density of the HNO_{3} solution is $1.06 \mathrm{~g} / \mathrm{mL}$. The density of the LiOH solution is $1.15 \mathrm{~g} / \mathrm{mL}$.

1. 0.567 g
2. 109.7 g
3. $56,600 \mathrm{~g}$
4. 56.6 g
5. $52,200 \mathrm{~g}$ correct
6. 103.5 g
mccord (pmccord) - HW6 Acids, Bases and Salts - mccord - (51520)
7. 49.3 g
8. $1,620,000 \mathrm{~g}$

Explanation:

The reaction is
$\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{LiOH}(\mathrm{aq}) \rightarrow$

$$
\mathrm{LiNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)
$$

Find the number of moles of LiOH used:
$(22.2 \mathrm{~L} \mathrm{LiOH}) \times \frac{4.66 \mathrm{~mol} \mathrm{LiOH}}{1 \mathrm{~L} \mathrm{LiOH}}$

$$
=103.452 \mathrm{~mol} \mathrm{LiOH}
$$

Find the moles of HNO_{3} needed:

$$
\begin{aligned}
(103.452 \mathrm{~mol} \mathrm{LiOH}) \times \frac{1 \mathrm{~mol} \mathrm{HNO}_{3}}{1 \mathrm{~mol} \mathrm{LiOH}} \\
=103.452 \mathrm{~mol} \mathrm{HNO}
\end{aligned}
$$

Finally, find the mass of HNO_{3} :

$$
\begin{aligned}
& \left(103.452 \mathrm{~mol} \mathrm{HNO}_{3}\right) \times \frac{1 \mathrm{~L} \mathrm{HNO}_{3}}{2.1 \mathrm{~mol} \mathrm{HNO}_{3}} \\
& \times \frac{1.06 \mathrm{~g} \mathrm{HNO}_{3}}{1 \mathrm{~mL} \mathrm{HNO}} 33 \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}} \\
& =52218.6 \mathrm{~g} \mathrm{HNO}_{3}
\end{aligned}
$$

$034 \quad 10.0$ points

An aqueous solution is prepared with 2 moles of HCl and 1 mole of $\mathrm{Ca}(\mathrm{OH})_{2}$. The resulting solution contains mainly of

1. water and $\mathrm{Cl}^{-}, \mathrm{H}^{+}$, and Ca^{2+} ions.
2. water and Cl^{-}and Ca^{2+} ions. correct
3. water and $\mathrm{Cl}^{-}, \mathrm{H}^{+}, \mathrm{OH}^{-}$, and Ca^{2+} ions.
4. water and $\mathrm{Cl}^{-}, \mathrm{OH}^{-}$, and Ca^{2+} ions.

Explanation:

$2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow$

$$
\mathrm{CaCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})
$$

1 mole of $\mathrm{Ca}(\mathrm{OH})_{2}$ reacts with 2 moles of HCl , so there will be no $\mathrm{Ca}(\mathrm{OH})_{2}$ nor HCl left. The $\mathrm{CaCl}_{2}(\mathrm{aq})$ will exist as $\mathrm{Ca}^{2+}(\mathrm{aq})$ and $\mathrm{Cl}^{-}(\mathrm{aq})$. The H^{+}from the HCl and the OH^{-}from the $\mathrm{Ca}(\mathrm{OH})_{2}$ have all reacted. Only a miniscule amount of H^{+}and OH^{-} remain from the autoionization of the water.

$035 \quad 10.0$ points

Assume you have a 0.4 M solution of acetic
acid that is 1.3 percent ionized or dissociated. What is the pH ?

1. 2.3 correct

2. 0.3
3. 0.4
4. 1.5
5. 4.3

Explanation:

$\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=0.4 \mathrm{M} \quad$ percent $=1.3 \%$
First calculate the concentration of acetic acid that is ionized:

$$
\begin{gathered}
\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+} \\
0.4 \mathrm{M} \times \frac{1.3}{100}=0.0052 \mathrm{M} \mathrm{H}^{+}
\end{gathered}
$$

Thus

$$
\begin{gathered}
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log (0.0052)=2.284 \\
\hline \mathbf{0 3 6} \quad \mathbf{1 0 . 0} \text { points }
\end{gathered}
$$

Determine the total ionic equation for the reaction between $\mathrm{HBr}(\mathrm{aq})$ and $\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})$.

$$
\text { 1. } 2 \mathrm{H}^{+}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

2. $2 \mathrm{Br}^{-}+\mathrm{Ba}^{2+} \rightarrow \mathrm{BaBr}_{2}$
3. $2 \mathrm{HBr}+\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow \mathrm{BaBr}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& \text { 4. } 2 \mathrm{H}^{+}+2 \mathrm{Br}^{-}+\mathrm{Ba}^{2+}+2 \mathrm{OH}^{-} \rightarrow \\
& \mathrm{Ba}^{2+}+2 \mathrm{Br}^{-}+2 \mathrm{H}_{2} \mathrm{O} \text { correct }
\end{aligned}
$$

Explanation:

An acid and base react to produce a salt and water. In this case the salt, formed from the available cations and anions other than H^{+}and OH^{-}, is barium bromide $\left(\mathrm{BaBr}_{2}\right)$, which is soluble. The formula unit equation is

$$
\begin{array}{r}
\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{HBr}(\mathrm{aq}) \rightarrow \\
\mathrm{BaBr}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\ell) .
\end{array}
$$

In the total ionic equation soluble compounds are written as their ions:
mccord (pmccord) - HW6 Acids, Bases and Salts - mccord - (51520)

$$
\begin{align*}
& {\left[\mathrm{Ba}_{(\mathrm{aq})}^{2+}+2 \mathrm{OH}_{(\mathrm{aq})}^{-}\right]+2\left[\mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{Br}_{(\mathrm{aq})}^{-}\right] \rightarrow} \tag{10}\\
& {\left[\mathrm{Ba}_{(\mathrm{aq})}^{2+}+2 \mathrm{Br}_{(\mathrm{aq})}^{1-}\right]+2 \mathrm{H}_{2} \mathrm{O}_{(\ell)}}
\end{align*}
$$

$037 \quad 10.0$ points
If aqueous acetic acid is reacted with sodium hydroxide, which of the following substances are in the net ionic equation?

1. acetate ion, hydroxide ion, hydronium ion, and water
2. acetate ion, hydronium ion, and water
3. acetic acid, hydroxide ion, acetate ion, and water correct
4. acetic acid, hydroxide ion, hydronium ion, acetate ion, and water
5. acetic acid, sodium ion, hydroxide ion, and acetate ion

Explanation:

$038 \quad 10.0$ points
Identify the products of the chemical equation

$$
3 \mathrm{LiOH}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow
$$

1. $3 \mathrm{LiH}+(\mathrm{OH})_{3} \mathrm{PO}_{4}$
2. $\mathrm{Li}_{3} \mathrm{PO}_{4}+3 \mathrm{H}_{2} \mathrm{O}$ correct
3. $3 \mathrm{H}+3 \mathrm{O}_{2}+\mathrm{H}_{3} \mathrm{Li}_{3}$
4. $\mathrm{Li}_{3} \mathrm{P}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{3} \mathrm{O}_{5}$

Explanation:

$$
\text { Acid }+ \text { Base } \rightarrow \text { Salt }+ \text { Water }
$$

$039 \quad 10.0$ points

What are the products of the following reaction?

$$
\mathrm{Sr}(\mathrm{OH})_{2}+2 \mathrm{HNO}_{3} \rightarrow
$$

1. $\mathrm{Sr}\left(\mathrm{NO}_{2}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}_{2}$
2. $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$ correct
3. $\mathrm{SrNO}_{3}+\mathrm{H}_{2} \mathrm{O}$
4. $\mathrm{SrH}_{2}+\mathrm{HNO}_{5}$

Explanation:

$\mathrm{Sr}(\mathrm{OH})_{2}$ is a base and HNO_{3} an acid; they create a salt and water.

$040 \quad 10.0$ points

Aqueous ammonia can be used to neutralize sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ and nitric acid $\left(\mathrm{HNO}_{3}\right)$ to produce two salts extensively used as fertilizers. They are

1. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ and $\mathrm{NH}_{4} \mathrm{NO}_{3}$, respectively. correct
2. $\mathrm{NH}_{4} \mathrm{SO}_{4}$ and $\mathrm{NH}_{4} \mathrm{NO}_{3}$, respectively.
3. $\mathrm{NH}_{4} \mathrm{SO}_{3}$ and $\mathrm{NH}_{4} \mathrm{OH}$, respectively.
4. cyanamide and cellulose nitrate, respectively.

Explanation:

Aqueous ammonia is a weak base which reacts with acids to form salts. With sulfuric acid and nitric acid, it forms ammonium sulfate and ammonium nitrate, respectively, both of which are used as fertilizers.

$041 \quad 10.0$ points

Identify the salt that is produced from the acid-base neutralization reaction between potassium hydroxide and acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$.

1. potassium cyanide
2. potassium acetate correct
3. potassium formate
4. potassium amide

Explanation:

The balanced equation is
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{aq})+\mathrm{K}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow$

$$
\mathrm{K}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)
$$

Potassium acetate $\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{~K}\right)$ is the salt.

$042 \quad 10.0$ points

What volume of $0.585 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ would be needed to neutralize 15.8 L of 1.51 M HCl ?

1. 40.8 L
2. 12.2 L
3. 6.12 L
4. 3.06 L

5. 20.4 L correct

Explanation:

$\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]=0.585 \mathrm{M} \quad V_{\mathrm{HCl}}=15.8 \mathrm{~L}$
$[\mathrm{HCl}]=1.51 \mathrm{M}$
The balanced equation for this neutralization reaction is

$$
2 \mathrm{HCl}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

We determine the moles of HCl present:

$$
\begin{aligned}
? \mathrm{~mol} \mathrm{HCl} & =15.8 \mathrm{~L} \mathrm{soln} \times \frac{1.51 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~L} \mathrm{soln}} \\
& =23.86 \mathrm{~mol} \mathrm{HCl}
\end{aligned}
$$

Using the mole ratio from the chemical equation we calculate the moles of $\mathrm{Ca}(\mathrm{OH})_{2}$ needed to react with this amount of HCl :

$$
\begin{aligned}
? \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}= & 23.86 \mathrm{~mol} \mathrm{HCl} \\
& \times \frac{1 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}}{2 \mathrm{~mol} \mathrm{HCl}} \\
= & 11.93 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}
\end{aligned}
$$

We use the molarity of the $\mathrm{Ca}(\mathrm{OH})_{2}$ solution to convert from moles to volume of $\mathrm{Ca}(\mathrm{OH})_{2}$:

$$
\begin{aligned}
? \mathrm{~L} \mathrm{Ca}(\mathrm{OH})_{2}= & 11.93 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2} \\
& \times \frac{1 \mathrm{~L} \mathrm{soln}}{0.585 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}} \\
= & 20.4 \mathrm{~L} \mathrm{Ca}(\mathrm{OH})_{2}
\end{aligned}
$$

It was found that 25 mL of 0.012 M HCl neutralized 40 mL of NaOH solution. What was the molarity of the base solution?

1. 0.006 M
2. 0.012 M
3. 0.050 M
4. 0.0075 M correct

Explanation:

$V_{\mathrm{HCl}}=25 \mathrm{~mL} \quad M_{\mathrm{HCl}}=0.012 \mathrm{M}$
$V_{\mathrm{NaOH}}=40 \mathrm{~mL}=0.04 \mathrm{~L}$
The base is NaOH . To neutralize, mol H^{+} $=\mathrm{mol} \mathrm{OH}{ }^{-}$.

$$
\begin{aligned}
n_{\mathrm{H}^{+}}= & \frac{0.012 \mathrm{~mol}}{\mathrm{~L}}(25 \mathrm{~mL} \mathrm{HCl}) \\
& \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times \frac{1 \mathrm{~mol} \mathrm{H}^{+}}{1 \mathrm{~mol} \mathrm{HCl}^{2}} \\
= & 0.0003 \mathrm{~mol} \mathrm{H}^{+}=n_{\mathrm{OH}^{-}}=n_{\mathrm{NaOH}}
\end{aligned}
$$

$$
\begin{aligned}
M_{\mathrm{NaOH}} & =\frac{\mathrm{mol}}{\mathrm{~L}}=\frac{0.0003 \mathrm{~mol} \mathrm{NaOH}}{0.04 \mathrm{~L}} \\
& =0.0075 \mathrm{M} \mathrm{NaOH}
\end{aligned}
$$

$044 \quad 10.0$ points

The pH of a solution of hydrochloric acid is 1.57. What is the molarity of the acid?

Correct answer: $0.0269 \mathrm{~mol} / \mathrm{L}$.

Explanation:

$045 \quad 10.0$ points

How many moles of NaOH are needed to neutralize three moles of HCl ?

1. 0.5
2. one
3. six
4. 1.5
5. three correct
6. two
7. eight
8. four

Explanation:

For acid base neutralization we need one mole of H^{+}for every mole of OH^{-}. Therefore the balanced equation is

$$
\begin{aligned}
& \mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \\
& ? \mathrm{~mol} \mathrm{NaOH}=3 \mathrm{~mol} \mathrm{HCl} \times \frac{1 \mathrm{~mol} \mathrm{NaOH}}{1 \mathrm{~mol} \mathrm{HCl}} \\
&=3 \mathrm{~mol} \mathrm{NaOH}
\end{aligned}
$$

