This print-out should have 16 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

001 10.0 points

What is the main overall driving force for any spontaneous reaction or change? Consider only the reaction system, not the surroundings.

- **1.** To maximize electrostatic interactions.
- **2.** To release heat energy.
- **3.** To obey the laws of gravity.
- 4. To maximize entropy.
- 5. To lower the available free energy.

002 10.0 points

When the chemical reaction

$$A + B \rightleftharpoons C + D$$

is at equilibrium,

1. the forward reaction has stopped.

2. the sum of the concentrations of A and B equals the sum of the concentrations of C and D.

3. both the forward and reverse reactions have stopped.

4. the reverse reaction has stopped.

5. neither the forward nor the reverse reactions have stopped.

6. all four concentrations are equal.

003 10.0 points

Explain why equilibium constants are dimensionless.

1. Every concentration or pressure that enters into $K_{\rm c}$ or $K_{\rm p}$ is really divided by the corresponding concentration or pressure of the substance in its standard state.

2. They are dimensionless because the pressures or concentrations we put in are all for the substances in their standard states.

3. They are dimensionless because concentrations and pressures have no units.

4. The statement is not true. Equilibrium constants have units that involve some multiple of atmospheres or moles per liter.

5. They are not really dimensionless but we must treat them as such in order to be able to take $\ln K$ in the expression $\Delta G^0 = -RT \ln K$.

004 10.0 points

The expression for K_c for the reaction at equilibrium is $4 \text{ NH}_3(\text{g}) + 5 \text{ O}_2(\text{g}) \rightleftharpoons 4 \text{ NO}(\text{g}) + 6 \text{ H}_2\text{O}(\text{g})$ **1.** $[\text{NH}_3]^4 [\text{O}_2]^5$ **2.** $\frac{[\text{NH}_3]^4 [\text{O}_2]^5}{[\text{NO}]^4 [\text{H}_2\text{O}]^6}$ **3.** $[\text{NO}]^4 [\text{H}_2\text{O}]^6$ **4.** $\frac{[\text{NO}]^4 [\text{H}_2\text{O}]^6}{[\text{NH}_3]^4 [\text{O}_2]^5}$ **005 10.0 points**

Consider the following reactions at 25° C:

reaction	$K_{\rm c}$
$2 \operatorname{NO}(g) \rightleftharpoons N_2(g) + O_2(g)$	1×10^{30}
$2 \operatorname{H}_2 O(g) \rightleftharpoons 2 \operatorname{H}_2(g) + O_2(g)$	5×10^{-82}
$2 \operatorname{CO}(g) + \operatorname{O}_2(g) \rightleftharpoons 2 \operatorname{CO}_2(g)$	3×10^{91}

Which compound is most likely to dissociate and give $O_2(g)$ at 25°C?

NO
CO₂

4. H₂O

006 10.0 points

At 600°C, the equilibrium constant for the reaction

$$2 \operatorname{HgO}(s) \rightarrow 2 \operatorname{Hg}(\ell) + O_2(g)$$

is 2.8. Calculate the equilibrium constant for the reaction

$$\frac{1}{2} \operatorname{O}_2(g) + \operatorname{Hg}(\ell) \to \operatorname{HgO}(s) \,.$$

1. -1.7

2. 0.36

3. 1.1

4. 1.7

5. 0.60

 $007 \quad 10.0 \text{ points}$ If $K_{\rm c} = 7.63 \times 10^5$ for the reaction

 $A(g) \rightleftharpoons 2 B(g)$,

what is $K_{\rm c}$ for the reaction written as

 $2 B(g) \rightleftharpoons A(g)$?

008 10.0 points Consider the reaction

 $2 \operatorname{HgO}(s) \rightleftharpoons 2 \operatorname{Hg}(\ell) + O_2(g)$.

What is the form of the equilibrium constant
$$K_c$$
 for the reaction?

1.
$$K_{c} = [O_{2}]$$

2. $K_{c} = \frac{[Hg]^{2} [O_{2}]}{[HgO]^{2}}$
3. $K_{c} = \frac{[O_{2}]}{[HgO]^{2}}$

4. None of the other answers is correct.

5. $K_{\rm c} = [{\rm Hg}]^2 [{\rm O}_2]$

 $\begin{array}{cc} \textbf{009} \quad \textbf{10.0 points} \\ K_{\rm c} = 2.6 \times 10^8 \ \text{at 825 K for the reaction} \end{array}$

$$2 H_2(g) + S_2(g) \rightleftharpoons 2 H_2S(g)$$

The equilibrium concentration of H_2 is 0.0020 M and that of S_2 is 0.0010 M. What is the equilibrium concentration of H_2S ?

1. 1.02 M
2. 0.10 M
3. 0.0010 M
4. 10 M

010 10.0 points

A mixture of $PCl_5(g)$ and $Cl_2(g)$ is placed into a closed container. At equilibrium it is found that $[PCl_5] = 0.71$ M, $[Cl_2] = 0.25$ M and $[PCl_3] = 0.11$ M.

$$PCl_5 \rightleftharpoons PCl_3 + Cl_2$$

What is the value of K_c for the reaction?

1. 0.0387324

2. 46

3. 0.0774648

4. 0.0193662

5. 0.116197

011 10.0 points

At 1000 K the equilibrium pressure of the three gases in one mixture

$$2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \rightleftharpoons 2 \operatorname{SO}_3(g)$$

were found to be 0.562 atm SO₂, 0.101 atm O₂, and 0.332 atm SO₃. Calculate the value of K_p for the reaction as written.

1. 0.171

2. 0.289

3. 5.83

4. 2.64

5. 3.46

012 10.0 points

A 2.000 liter vessel is filled with 4.000 moles of SO_3 and 6.000 moles of O_2 . When the reaction

$$2 \operatorname{SO}_3(\operatorname{gas}) \rightleftharpoons 2 \operatorname{SO}_2(\operatorname{gas}) + \operatorname{O}_2(\operatorname{gas})$$

comes to equilibrium a measurement shows that only 1.000 mole of SO₃ remains. How many moles of O₂ are in the vessel at equilibrium?

- **1.** 7.500 mol
- **2.** 7.000 mol
- 3. 12.000 mol
- **4.** 3.750 mol
- 5. None of these is correct.

013 10.0 points

Suppose the reaction

$A \rightleftharpoons B$

has an equilibrium constant of 1.0 and the initial concentrations of A and B are 0.5 M and 0.0 M, respectively. Which of the following is the correct value for the final concentration of A?

 $\mathbf{1.}\ 0.250\ \mathrm{M}$

2. 1.00 M

3. None of these is correct.

 $\textbf{4.}~0.500~\mathrm{M}$

5. 1.50 M

014 10.0 points Suppose the reaction

 $H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$

has an equilibrium constant $K_c = 49$ and the initial concentration of H₂ and I₂ is 0.5 M and HI is 0.0 M. Which of the following is the correct value for the final concentration of HI(g)?

1.	0.219	М
2.	0.778	М
3.	0.599	М
4.	0.389	М
5.	0.250	М

015 10.0 points

At $T = 700^{\circ}$ C, $K_{c} = 121$ for the gas-phase reaction

$A+B\rightleftharpoons C+D$

Starting with 1.72 moles each of A and B in a 5.00 liter container, what will be the equilibrium concentration of C at this temperature? Answer in units of M

016 10.0 points Consider the reaction

 $Ni(CO)_4(g) \rightarrow Ni(s) + 4 CO(g)$.

If the initial concentration of $Ni(CO)_4(g)$ is 1.0 M, and x is the equilibrium concentration of CO(g), what is the correct equilibrium relation?

1.
$$K_{\rm c} = \frac{x}{1.0 - \frac{x}{4}}$$

2. $K_{\rm c} = \frac{x^5}{1.0 - \frac{x}{4}}$
3. $K_{\rm c} = \frac{x^4}{1.0 - \frac{x}{4}}$

4.
$$K_{\rm c} = \frac{x^4}{1.0 - 4x}$$

5. $K_{\rm c} = \frac{4x}{1.0 - 4x}$