Worksheet 8

1. Butadiene $\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)$ reacts with itself to form a dimer with the formula $\mathrm{C}_{8} \mathrm{H}_{12}$. The reaction is second order in $\mathrm{C}_{4} \mathrm{H}_{6}$. If the rate constant at a particular temperature is $4.0 \times 10^{-2} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ and the initial concentration of $\mathrm{C}_{4} \mathrm{H}_{6}$ is 0.0200 M .
(a) What is its molarity after a reaction time of 1.00 hour?
(b) What is the time (in hours) when the $\mathrm{C}_{4} \mathrm{H}_{6}$ concentration reaches a value of 0.0020 M ?
(c) What is the half-life (in minutes) of the reaction when the initial $\mathrm{C}_{4} \mathrm{H}_{6}$ concentration is 0.0200 M? How many minutes does it take for the concentration of $\mathrm{C}_{4} \mathrm{H}_{6}$ to drop from 0.0100 M to 0.0050 M?
2. At $25^{\circ} \mathrm{C}$, the half-life of a certain first-order reaction is 248 s . What is the value of the rate constant at this temperature?
3. A reaction of the type $\mathrm{A} \rightarrow \mathrm{B}+\mathrm{C}$ has a rate constant $k=3.6 \times 10^{-5} \mathrm{M} / \mathrm{s}$.
(a) What is the order of the reaction?
(b) What is the molarity of A after a reaction time of 30.0 min if the initial concentration of A is 0.096 M?
(c) What is the half-life (in minutes) of the reaction in part (b)?
4. The half-life for the first-order decomposition of $\mathrm{N}_{2} \mathrm{O}_{4}$ is $1.3 \times 10^{-5} \mathrm{~s}$.

$$
\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightarrow 2 \mathrm{NO}_{2}(g)
$$

If $\mathrm{N}_{2} \mathrm{O}_{4}$ is introduced into an evacuated flask at a pressure of 17.0 mm Hg , how many seconds are required for the pressure of NO_{2} to reach 1.3 mm Hg ?
5. The rate constant for the decomposition of gaseous NO_{2} to NO and O_{2} is $4.7 /(\mathrm{M} \cdot \mathrm{s})$ at $383^{\circ} \mathrm{C}$. Consider the decomposition of a sample of pure NO_{2} having an initial pressure of 746 mm Hg in a 5.00 L reaction vessel at $383^{\circ} \mathrm{C}$.
(a) What is the order of the reaction?
(b) What is the initial rate of formation of O_{2} in $\mathrm{g} /(\mathrm{L} \cdot \mathrm{s})$?
(c) What is the mass of O_{2} in the vessel after a reaction time of 1.00 min ?

