Worksheet 7

Chemical kinetics is the area of chemistry concerned with reaction rates. A reaction rate is defined as the increase in the concentration of a product, or the decrease in the concentration of a reactant, per unit time. It can be expressed as the average rate during a given time interval, the instantaneous rate at a particular time, or the initial rate at the beginning of the reaction.

Reaction rates depend on reactant concentrations, temperature, and the presence of catalysts. The concentration dependence is given by the rate law, rate $=k[\mathrm{~A}]^{m}[\mathrm{~B}]^{n}$, where k is the rate constant, m and n specify the reaction order with respect to reactants A and B , and $m+$ n is the overall reaction order. The values of m and n must be determined by experiment. They cannot be deduced from the stoichiometry of the overall reaction.

The integrated rate law is a concentration-time equation that makes it possible to calculate concentrations at any time t or the time required for an initial concentration to reach any particular value. For a first-order reaction, the integrated rate law is $\ln [\mathrm{A}]_{t}=-k t+\ln [\mathrm{A}]_{0}$. A graph of $\ln [\mathrm{A}]$ versus time is a straight line with a slope equal to $-k$. For a second-order reaction, the integrated rate law is $1 /[\mathrm{A}]_{\mathrm{t}}=k t+1 /[\mathrm{A}]_{0}$. A graph of $1 /[\mathrm{A}]$ versus time is linear with a slope equal to k. For a zero-order reaction, the integrated rate law is $[\mathrm{A}]=-k t+[\mathrm{A}]_{0}$, and the graph of [A] versus time is linear with a slope equal to $-k$. The half-life $\left(t_{1 / 2}\right)$ of a reaction is the time required for the reactant concentration to drop to one-half its initial value.

1. Give four related expressions for the rate of the reaction

$$
2 \mathrm{H}_{2} \mathrm{CO}(g)+\mathrm{O}_{2}(g) \Rightarrow 2 \mathrm{CO}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)
$$

assuming that the concentrations of any intermediates are constant and that the volume of the reaction vessel does not change.
2. In the presence of vanadium oxide, $\mathrm{SO}_{2}(\mathrm{~g})$ reacts with an excess of oxygen to give $\mathrm{SO}_{3}(\mathrm{~g})$:

$$
\mathrm{SO}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \Rightarrow \mathrm{SO}_{3}(g)
$$

This reaction is an important step in the manufacture of sulfuric acid. It is observed that tripling the SO_{2} concentration increases the rate by a factor of 3 , but tripling the SO_{3} concentration decreases the rate by a factor of $1.7 \cong \sqrt{3}$. The rate is insensitive to the O_{2} concentration as long as an excess of oxygen is present.
(a) Write the rate expression for this reaction, and give the units of the rate constant k.
(b) If $\left[\mathrm{SO}_{2}\right]$ is multiplies by 2 and $\left[\mathrm{SO}_{3}\right]$ by 4 but all other conditions are unchanged, what change in the rate will be observed?
3. The rate for the oxidation of iron(II) by cerium(IV)

$$
\mathrm{Ce}^{4+}(a q)+\mathrm{Fe}^{2+}(a q) \Rightarrow \mathrm{Ce}^{3+}(a q)+\mathrm{Fe}^{3+}(a q)
$$

is measured at several different initial concentrations of the two reactants:

Worksheet 7

$\left[\mathrm{Ce}^{4+}\right]\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$\left[\mathrm{Fe}^{2+}\right]\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	Rate $\left(\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\right)$
1.1×10^{-5}	1.8×10^{-5}	2.0×10^{-7}
1.1×10^{-5}	2.8×10^{-5}	3.1×10^{-7}
3.4×10^{-5}	2.8×10^{-5}	9.5×10^{-7}

(a) Write the rate expression for this reaction.
(b) Calculate the rate constant k, and give its units.
(c) Predict the initial reaction rate for a solution in which $\left[\mathrm{Ce}^{4+}\right]$ is $2.6 \times 10^{-5} \mathrm{M}$ and $\left[\mathrm{Fe}^{2+}\right]$ is 1.3 x $10^{-5} \mathrm{M}$.
4. At 600 K , the rate constant for the first-order decomposition of nitro ethane

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NO}_{2}(g) \Rightarrow \mathrm{C}_{2} \mathrm{H}_{4}(g)+\mathrm{HNO}_{2}(g)
$$

is $1.9 \times 10^{-4} \mathrm{~s}^{-1}$. A sample of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NO}_{2}$ is heated to 600 K , at which point its initial partial pressure is measured to be 0.078 atm . Calculate its partial pressure after 3.0 hours.
5. Consider the following reaction mechanism:

$$
\begin{gathered}
\mathrm{NO}_{2} \mathrm{Cl} \Rightarrow \mathrm{NO}_{2}+\mathrm{Cl} \\
\mathrm{Cl}+\mathrm{H}_{2} \mathrm{O} \Rightarrow \mathrm{HCl}+\mathrm{OH} \\
\mathrm{OH}+\mathrm{NO}_{2}+\mathrm{N}_{2} \Rightarrow \mathrm{HNO}_{3}+\mathrm{N}_{2}
\end{gathered}
$$

(a) Write the overall equation for the reaction.
(b) Identify the reaction intermediate(s).
6. Chlorine reacts with hydrogen sulfide in aqueous solution

$$
\mathrm{Cl}_{2}(a q)+\mathrm{H}_{2} \mathrm{~S}(a q) \Rightarrow \mathrm{S}(s)+2 \mathrm{H}^{+}(a q)+2 \mathrm{Cl}^{-}(a q)
$$

in a second-order reaction that follows the rate expression

$$
\text { rate }=k\left[\mathrm{Cl}_{2}\right]\left[\mathrm{H}_{2} \mathrm{~S}\right]
$$

Which, if any, of the following mechanisms are consistent with the observed rate expression?
(a) $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{~S} \Rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}+\mathrm{Cl}^{+}+\mathrm{HS}^{-}$
(slow)
$\mathrm{Cl}^{+}+\mathrm{HS}^{-} \Rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}+\mathrm{S}$
(b) $\mathrm{H}_{2} \mathrm{~S} \Leftrightarrow \mathrm{HS}^{-}+\mathrm{H}^{+}$
(fast equilibrium)
$\mathrm{HS}^{-}+\mathrm{Cl}_{2} \Rightarrow 2 \mathrm{Cl}^{-}+\mathrm{S}+\mathrm{H}^{+}$
(slow)
(c) $\mathrm{H}_{2} \mathrm{~S} \Leftrightarrow \mathrm{HS}^{-}+\mathrm{H}^{+}$
(fast equilibrium)
$\mathrm{H}^{+}+\mathrm{Cl}_{2} \Leftrightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}+\mathrm{Cl}^{+}$
(fast equilibrium)
$\mathrm{Cl}^{+}+\mathrm{HS}^{-} \Rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}+\mathrm{S}$
(slow)

