Worksheet 6

1. A 7.0 mass $\%$ solution of $\mathrm{H}_{3} \mathrm{PO}_{4}$ in water has a density of $1.0353 \mathrm{~g} / \mathrm{mL}$. Calculate the pH and the concentrations of all species present $\left(\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{HPO}_{4}{ }^{2-}, \mathrm{PO}_{4}{ }^{3-}, \mathrm{H}_{3} \mathrm{O}^{+}\right.$, and $\left.\mathrm{OH}^{-}\right)$in the solution. You will need to look up the equilibrium constants.

$\mathrm{H}_{3} \mathrm{PO}_{4}, 98.0 \mathrm{amu}$

Assume 1.000 L of solution
Mass of solution $=1.000 \mathrm{~L} \times 1000 \mathrm{~mL} / 1 \mathrm{~L} \times 1.0353 \mathrm{~g} / \mathrm{mL}=1035.3 \mathrm{~g}$
Mass of $\mathrm{H}_{3} \mathrm{PO}_{4}=(0.070)(1035.3 \mathrm{~g})=72.47 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4}$
$\mathrm{mol} \mathrm{H}_{3} \mathrm{PO}_{4}=72.47 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4} \times 1 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4} / 98.00 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4}=0.740 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}$
$\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]=0.740 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4} / 1.000 \mathrm{~L}=0.740 \mathrm{M}$
For the dissociation of the first proton, the following equilibrium must be considered:

$\mathrm{K}_{\mathrm{a} 1}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right] /\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]=7.5 \times 10^{-3}=\mathrm{x}^{2} / 0.740-\mathrm{x}$
$\mathbf{x}^{2}+\left(7.5 \times 10^{-3}\right) \mathrm{x}-\left(5.55 \times 10^{-3}\right)=0$
Solve for x using the quadratic formula.
$x=0.0708$ and $\mathbf{- 0 . 0 7 8 3}$, only the positive value of x has a physical meaning
$x=0.0708 \mathrm{M}=\left[\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
For the dissociation of the second proton, the following equilibrium must be considered:

```
\(-\mathrm{H}_{2} \mathrm{PO}_{4}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{HPO}_{4}{ }^{2-}(a q)\)
initial (M) \(0.0708 \quad 0.0708 \quad 0\)
change (M) -y \(\quad+\mathbf{y} \quad+\mathbf{y}\)
equil (M) 0.0708-y \(0.0708+\mathbf{y}\) y
\(\mathrm{K}_{\mathrm{a} 2}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HPO}_{4}{ }^{2-}\right] /\left[\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right]=6.2 \times 10^{-8}=(0.0708+\mathrm{y})(\mathrm{y}) / 0.0708-\mathrm{y}\)
    \(\cong(0.0708)(y) / 0.0708=y\)
\(\mathrm{y}=6.2 \times 10^{-8} \mathrm{M}=\left[\mathrm{HPO}_{4}{ }^{2-}\right]\)
```

For the dissociation of the third proton, the following equilibrium must be considered:

```
                                    \(\begin{array}{cc}\mathrm{HPO}_{4}{ }^{2-}(a q) \\ 6.2 \times \mathbf{1 0}^{-8} & +\mathrm{H}_{2} \mathrm{O}(l) \leftrightharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q) \\ & 0.0708 \\ \mathrm{PO}_{4} & 0\end{array}\)
initial (M) \(\quad 6.2 \times 10^{-8} \quad 0.07080\)
change (M) -z \(+\mathbf{z}+\mathbf{z}\)
equil (M) \(\quad\left(6.2 \times 10^{-8}\right)-\mathrm{z} \quad 0.0708+\mathrm{z} \mathrm{z}^{\mathbf{z}}\)
```

```
\(\mathrm{K}_{\mathrm{a} 3}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{PO}_{4}{ }^{3-}\right] /\left[\mathrm{HPO}_{4}{ }^{2-}\right]=4.8 \times 10^{-13}=(0.0708+\mathrm{z})(\mathrm{z}) /\left(6.2 \times 10^{-8}\right)-\mathrm{z}\)
```

$\mathrm{K}_{\mathrm{a} 3}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{PO}_{4}{ }^{3-}\right] /\left[\mathrm{HPO}_{4}{ }^{2-}\right]=4.8 \times 10^{-13}=(0.0708+\mathrm{z})(\mathrm{z}) /\left(6.2 \times 10^{-8}\right)-\mathrm{z}$
$\cong(0.0708)(\mathrm{z}) / 6.2 \times 10^{-8}$
$\cong(0.0708)(\mathrm{z}) / 6.2 \times 10^{-8}$
$\mathrm{z}=4.2 \times 10^{-19} \mathrm{M}=\left[\mathrm{PO}_{4}{ }^{3-}\right]$
$\mathrm{z}=4.2 \times 10^{-19} \mathrm{M}=\left[\mathrm{PO}_{4}{ }^{3-}\right]$
$\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]=0.740-\mathrm{x}=0.740-0.0708=0.67 \mathrm{M}$

```
\(\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]=0.740-\mathrm{x}=0.740-0.0708=0.67 \mathrm{M}\)
```


Worksheet 6

$\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.0708 \mathrm{M}=0.071 \mathrm{M}$
$\left[\mathrm{HPO}_{4}{ }^{2-}\right]=6.2 \times 10^{-8} \mathrm{M}$
$\left[\mathrm{PO}_{4}{ }^{3-}\right]=4.2 \times 10^{-19} \mathrm{M}$
$\left[\mathrm{OH}^{-}\right]=\mathrm{K}_{\mathrm{w}} /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-14} / 0.0708=1.4 \times 10^{-13} \mathrm{M}$
$\mathbf{p H}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log (\mathbf{0 . 0 7 0 8})=\mathbf{1 . 1 5}$
2. Neutralization reactions involving either a strong acid or a strong base go essentially to completion, and therefore we must take such neutralizations into account before calculating concentrations in mixtures of acids and bases. Consider a mixture of 3.28 g of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ and 300.0 mL of 0.180 M HCl . Write balanced net ionic equations for the neutralization reactions, and calculate the pH of the solution.
$\mathrm{Na}_{3} \mathrm{PO}_{4}, 163.94 \mathrm{amu}$
$3.28 \mathrm{~g} \mathrm{Na}_{3} \mathrm{PO}_{4} \times 1 \mathrm{~mol} \mathrm{Na}_{3} \mathrm{PO}_{4} / 163.94 \mathrm{~g} \mathrm{Na}_{3} \mathrm{PO}_{4}=\mathbf{0 . 0 2 0 0} \mathbf{~ m o l}=20.0 \mathrm{mmol} \mathrm{Na} 3 \mathrm{PO}_{4}$ $300.0 \mathrm{~mL} \times \mathbf{0 . 1 8 0} \mathbf{~ m m o l} / \mathbf{m L}=54.0 \mathrm{mmol} \mathrm{HCl}$

$$
\mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{PO}_{4}{ }^{3-}(a q) \leftrightharpoons \mathrm{HPO}_{4}{ }^{2-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)
$$

before (mmol) 54.0	$\mathbf{2 0 . 0}$	0
change (mmol)	-20.0	$-\mathbf{2 0 . 0}$
after (mmol)	$\mathbf{3 4 . 0}$	0

	$\mathrm{H}_{3} \mathrm{O}^{+}(a q)$	$+\mathrm{HPO}_{4}{ }^{2-}(a q) \leftrightharpoons$	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$
before (mmol) 34.0	20.0	0	
change (mmol) $)$	-20.0	-20.0	+20.0
after (mmol)	14.0	0	$\mathbf{2 0 . 0}$

$$
\mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(a q) \leftrightharpoons \mathrm{H}_{3} \mathrm{PO}_{4}(a q)+\mathrm{H}_{2} \mathrm{O}(l)
$$

before (mmol) $14.0 \quad 20.0 \quad 0$
change (mmol) -14.0 $\mathbf{- 1 4 . 0}+\mathbf{1 4 . 0}$
$\begin{array}{llll}\text { after (mmol) } & 0 & \mathbf{6 . 0} & \mathbf{1 4 . 0}\end{array}$
$\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]=14.0 \mathrm{mmol} / 300.0 \mathrm{~mL}=0.47 \mathrm{M} ;\left[\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right]=6.0 \mathrm{mmol} / 300.0 \mathrm{~mL}=0.020 \mathrm{M}$

$\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{2-}\right] /\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]=7.5 \times 10^{-3}=\mathbf{x}(\mathbf{0 . 0 2 0}+\mathbf{x}) /(\mathbf{0 . 0 4 7}-\mathrm{x})$
$\mathrm{x}^{2}+\mathbf{0 . 0 2 7 5 x}-\left(\mathbf{3 . 5 2 5} \times 10^{-4}\right)=0$
Solve using the quadratic formula.
$\mathrm{x}=0.00952$
$\mathbf{p H}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log (\mathbf{0 . 0 0 9 5 2})=\mathbf{2 . 0 2}$

Worksheet 6

3. A 1.000 L sample of HF gas at $20.0^{\circ} \mathrm{C}$ and 0.601 atm pressure was dissolved in enough water to make 50.0 mL of hydrofluoric acid. What is the pH of the solution?
```
\(\mathbf{P V}=\mathrm{nRT}, \mathrm{n}=\mathrm{PV} / \mathrm{RT}=(\mathbf{0 . 6 0 1} \mathrm{atm})(1.000 \mathrm{~L}) /\left(0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(293.1 \mathrm{~K})\)
\(\mathrm{n}=0.0250 \mathrm{~mol} \mathrm{HF}\)
\(50.0 \mathrm{~mL} \times 1.00 \mathrm{~L} / 1000 \mathrm{~mL}=0.0500 \mathrm{~L}\)
\([\mathrm{HF}]=0.0250 \mathrm{~mol} \mathrm{HF} / 0.0500 \mathrm{~L}=0.500 \mathrm{M}\)
    \(\mathrm{HF}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{F}^{-}(a q)\)
initial (M) \(0.500 \quad \cong 0\)
change ( \(\mathbf{M}\) ) \(-\mathbf{x} \quad+\mathbf{x} \quad+\mathbf{x}\)
\(\begin{array}{cccc}\text { equil (M) } & 0.500-x & x & x\end{array}\)
\(\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{F}^{-}\right] /[\mathrm{HF}]=3.5 \times 10^{-4}=\mathrm{x}^{2} / 0.500-\mathrm{x}\)
\(\mathbf{x}^{2}+\left(3.5 \times 10^{-4}\right) \mathrm{x}-\left(1.75 \times 10^{-4}\right)=0\)
Solve for \(x\) using the quadratic formula.
\(\mathrm{x}=0.0131\)
\(\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log (\mathbf{0 . 0 1 3 1})=1.883=1.88\)
```

4. Ethylenediamine $\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right.$, abbreviated en) is an organic base that can accept protons:
$\mathrm{en}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightharpoons \mathrm{enH}^{+}(a q)+\mathrm{OH}^{-}(a q) \quad \mathrm{K}_{\mathrm{b} 1}=5.2 \times 10^{-4}$
$\mathrm{enH}^{+}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightharpoons \mathrm{enH}_{2}{ }^{2+}(a q)+\mathrm{OH}^{-}(a q) \quad \mathrm{K}_{\mathrm{b} 2}=3.7 \times 10^{-7}$
Consider the titration of 30.0 mL of 0.100 M ethylenediamine with 0.100 M HCl . Calculate the pH after additions of the following volumes of acid, and construct a qualitative plot of pH versus milliliters of HCl added.
(a) 0.0 mL

	$\mathrm{en}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightharpoons \mathrm{enH}^{+}(a q)+\mathrm{OH}^{-}(a q)$		
initial (M)	0.100	0	$\cong 0$
change (M)	-x	+x	$+\mathbf{x}$
equil (M)	$0.100-\mathrm{x}$	x	\mathbf{x}

$\mathrm{K}_{\mathrm{b}}=\left[\mathrm{enH}^{+}\right]\left[\mathrm{OH}^{-}\right] /[\mathrm{en}]=5.2 \times 10^{-4}=(\mathrm{x})(\mathrm{x}) / 0.100-\mathrm{x}$
$\mathrm{x}^{2}+\left(5.2 \times 10^{-4}\right) \mathrm{x}-\left(5.2 \times 10^{-5}\right)=0$
Use the quadratic formula to solve for x.
$\mathbf{x}=0.0070$
$\left[\mathrm{OH}^{-}\right]=\mathrm{x}=0.0070 \mathrm{M}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{K}_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} / 0.0070=1.43 \times 10^{-12} \mathrm{M}$
$\mathbf{p H}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(1.43 \times 10^{-12}\right)=11.84$

Worksheet 6

(b) 15.0 mL
$(30.0 \mathrm{~mL})(\mathbf{0 . 1 0 0} \mathbf{~ m m o l} / \mathrm{mL})=3.00 \mathrm{mmol} \mathrm{en}$ $(15.0 \mathrm{~mL})(0.100 \mathrm{mmol} / \mathrm{mL})=1.50 \mathrm{mmol}$ en Halfway to the first equivalence point, $\left[\mathrm{OH}^{-}\right]=K_{b 1}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{K}_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} / 5.2 \times \mathbf{1 0}^{-4}=\mathbf{1 . 9 2} \times \mathbf{1 0}^{-11}$
$\mathbf{p H}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(1.92 \times 10^{-11}\right)=\mathbf{1 0 . 7 2}$
(c) 30.0 mL

At the first equivalence point $\mathrm{pH}=\mathrm{pK}_{\mathrm{a} 1}+\mathrm{pK}_{\mathrm{a} 2} / 2=9.14$
(d) 45.0 mL

Halfway to the first and second equivalence points, $\left[\mathrm{OH}^{-}\right]=K_{b 2}=3.7 \times 10^{-7} \mathrm{M}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{K}_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]=1.0 \times \mathbf{1 0}^{-14} / \mathbf{3 . 7} \times \mathbf{1 0}^{-7}=2.70 \times \mathbf{1 0}^{-\mathbf{8}} \mathrm{M}$
$\mathbf{p H}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(2.70 \times 10^{-8}\right)=7.57$
(e) 60.0 mL

At the second equivalence point only the acidic $\mathrm{enH}_{2} \mathrm{Cl}_{2}$ is in solution.
For $\mathrm{enH}_{2}{ }^{2+}, \mathrm{K}_{\mathrm{a}}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{b}}$ for $\mathrm{enH}^{+}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{b} 2}=\mathbf{1 . 0} \times 10^{-14} / \mathbf{3 . 7} \times \mathbf{1 0}^{-7}=\mathbf{2 . 7 0 \times 1 0 ^ { - 8 }}$
$\left[\mathrm{enH}_{2}{ }^{2+}\right]=\mathbf{3 . 0 0} \mathbf{~ m m o l} /(\mathbf{3 0 . 0} \mathbf{~ m L}+\mathbf{6 0 . 0} \mathbf{~ m L})=0.0333 \mathrm{M}$

Solve for $\mathbf{x} . \mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{ }\left(\mathbf{2 . 7 0} \times \mathbf{1 0}^{-8}\right)(\mathbf{0 . 0 3 3 3})=\mathbf{3 . 0 0} \times \mathbf{1 0}^{-5} \mathbf{M}$
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(3.00 \times 10^{-5}\right)=4.52$
(f) 75.0 mL

excess HCl

$(75.0 \mathrm{~mL}-60.0 \mathrm{~mL})(\mathbf{0 . 1 0 0} \mathrm{mmol} / \mathrm{mL})=1.50 \mathrm{mmol} \mathrm{HCl}=1.50 \mathrm{mmol} \mathrm{H} \mathrm{O}^{+}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.50 \mathrm{mmol} /(\mathbf{3 0 . 0} \mathrm{mL}+75.0 \mathrm{~mL})=0.0143 \mathrm{M}$
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log (0.0143)=1.84$
5. A 40.0 mL sample of a mixture of HCl and $\mathrm{H}_{3} \mathrm{PO}_{4}$ was titrated with 0.100 M NaOH . The first equivalence point was reached after 88.0 mL of base, and the second equivalence point was reached after 126.4 mL of base.

Worksheet 6

(a) What is the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$at the first equivalence point?

The first equivalence point is reached when all the $\mathrm{H}_{3} \mathrm{O}^{+}$from HCl and $\mathrm{H}_{3} \mathrm{O}^{+}$from the first ionization of $\mathrm{H}_{3} \mathrm{PO}_{4}$ is consumed.
At the first equivalence point $\mathrm{pH}=\mathrm{pK}_{\mathrm{a} 1}+\mathrm{pK}_{\mathrm{a} 2} / 2=4.66$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}=10^{(-4.66)}=2.2 \times 10^{-5} \mathrm{M}$
$(88.0 \mathrm{~mL})(0.100 \mathrm{mmol} / \mathrm{mL})=8.80 \mathrm{mmol} \mathrm{NaOH}$ are used to get to the first equivalence point.
(b) What are the initial concentrations of HCl and $\mathrm{H}_{3} \mathrm{PO}_{4}$ in the mixture?
$\mathbf{m m o l}\left(\mathrm{HCl}+\mathrm{H}_{3} \mathrm{PO}_{4}\right)=\mathbf{m m o l ~} \mathrm{NaOH}=8.8 \mathrm{mmol}$
$\mathbf{m m o l ~ H} \mathbf{H}_{3} \mathrm{PO}_{4}=(126.4 \mathrm{~mL}-88.0 \mathrm{~mL})(0.100 \mathrm{mmol} / \mathrm{mL})=3.84 \mathrm{mmol}$
$\mathbf{m m o l ~ H C l}=(8.8-3.84)=4.96 \mathrm{mmol}$
$[\mathrm{HCl}]=4.96 \mathrm{mmol} / 40.0 \mathrm{~mL}=0.124 \mathrm{M}$
$\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]=3.84 \mathrm{mmol} / 40.0 \mathrm{~mL}=0.0960 \mathrm{M}$
(c) What percent of the HCl is neutralized at the first equivalence point?
100% of the $\mathbf{H C l}$ is neutralized at the first equivalence point.
(d) What is the pH of the mixture before addition of any base?

	$\mathrm{H}_{3} \mathrm{PO}_{4}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(a q)$		
initial (M)	0.0960	0.124	0
change (M)	-x	+x	+x
equil (M)	0.0960 - x	$\mathbf{0 . 1 2 4 + x}$	\mathbf{x}

$\mathrm{x}^{2}+\mathbf{0 . 1 3 2 x}-\left(7.2 \times 10^{-4}\right)=0$
Use the quadratic formula to solve for x.
$\mathrm{x}=0.005$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.124+\mathrm{x}=0.124+\mathbf{0 . 0 0 5}=\mathbf{0 . 1 2 9 ~ M}$
$\mathbf{p H}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log (\mathbf{0 . 1 2 9})=\mathbf{0 . 8 9}$
(e) Sketch the pH titration curve, and label the buffer regions and equivalence points.
(f) What indicators would you select to signal the equivalence points?

Bromcresol green or methyl orange are suitable indicators for the first equivalence point. Thymolphthalein is a suitable indicator for the second equivalence point.
6. In qualitative analysis, Ca^{2+} and Ba^{2+} are separated from $\mathrm{Na}^{+}, \mathrm{K}^{+}$, and Mg^{2+} by adding aqueous $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ to a solution that also contains aqueous NH_{3}. Assume that the concentrations after mixing are $0.080 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ and $0.16 \mathrm{M} \mathrm{NH}_{3}$.

Worksheet 6

(a) List all the Bronsted-Lowry acids and bases present initially, and identify the principal reaction.
$\mathrm{HCO}_{3}^{-}(a q)+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{CO}_{3}{ }^{2-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$
(b) Calculate the pH and the concentrations of all species present in the solution.
$\mathrm{mol} \mathrm{HCO}_{3}{ }^{-}=(\mathbf{0 . 5 6 0} \mathrm{mol} / \mathrm{L})(0.0500 \mathrm{~L})=0.0280 \mathrm{~mol} \mathrm{HCO}_{3}{ }^{-}$
$\mathbf{m o l ~ O H}=(0.400 \mathrm{~mol} / \mathrm{L})(0.0500 \mathrm{~L})=\mathbf{0 . 0 2 0 0} \mathrm{mol} \mathrm{OH}^{-}$

	$\mathrm{HCO}_{3}{ }^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{CO}_{3}{ }^{2-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$	
before rxn (mol)	$0.0280 \quad 0.0200$	0
change (mol)	-0.0200 -0.0200	+0.0200
after rxn (mol)	0.0280-0.0200 0	0.0200

$\mathrm{mol} \mathrm{HCO}_{3}{ }^{-}=0.0280-0.0200=0.0080 \mathrm{~mol}$
$\left[\mathrm{HCO}_{3}{ }^{-}\right]=0.0080 \mathrm{~mol} / 0.1000 \mathrm{~L}=0.080 \mathrm{M}$
$\left[\mathrm{CO}_{3}{ }^{2-}\right]=0.0200 \mathrm{~mol} / 0.1000 \mathrm{~L}=0.200 \mathrm{M}$
initial (M)
change (M)
equil (M)

$\mathrm{HCO}_{3}{ }^{-}(a q)$	$+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)$	$+\mathrm{CO}_{3}{ }^{2-}(a q)$
0.080	$\cong 0$	0.200
-x	$+\mathbf{x}$	$+\mathbf{x}$
$\mathbf{0 . 0 8 0 - x}$	\mathbf{x}	$\mathbf{0 . 2 0 0}+\mathrm{x}$

$\left.\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right] / \mathrm{HCO}_{3}{ }^{-}\right]=5.6 \times 10^{-11}=\mathbf{x}(0.200+\mathrm{x}) / \mathbf{0 . 0 8 0 - \mathrm { x } \cong \mathbf { x } (0 . 2 0 0) / 0 . 0 8 0}$
Solve for x . $\mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.24 \times 10^{-11} \mathrm{M}$
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(\mathbf{2 . 2 4} \times 10^{-11}\right)=\mathbf{1 0 . 6 5}$

