Worksheet 3

1. Isopropyl alcohol can dissociate into acetone and hydrogen:
$\left(\mathrm{CH}_{3}\right) \mathrm{CHOH}(\mathrm{g}) \leftrightharpoons\left(\mathrm{CH}_{3}\right) \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$
At $179{ }^{\circ} \mathrm{C}$, the equilibrium constant for this dehydrogenation reaction is 0.444 .
(a) If 10.00 g of isopropyl alcohol is placed in a 10.00 L vessel and heated to $179^{\circ} \mathrm{C}$, what is the partial pressure of acetone when equilibrium is attained?
(b) What fraction of isopropyl alcohol is dissociated at equilibrium?
2. The equilibrium constant for the reaction:
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~s}) \leftrightharpoons 2 \mathrm{HI}(\mathrm{g})$
at $25^{\circ} \mathrm{C}$ is $\mathrm{K}=0.345$.
(a) If the partial pressure of hydrogen is $\mathrm{P}_{\mathrm{H} 2}=1.00 \mathrm{~atm}$ and solid iodine is present, what is the equilibrium partial pressure of hydrogen iodide, P_{HI}, at $25^{\circ} \mathrm{C}$?
(b) An excess of solid I_{2} is added to a container filled with hydrogen at $25^{\circ} \mathrm{C}$ and a pressure of 4.00 atm . Calculate the pressures of $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{HI}(\mathrm{g})$ reached at equilibrium.
3. At $300^{\circ} \mathrm{C}$ the equilibrium constant for the reaction
$\mathrm{PCl}_{5}(g) \leftrightharpoons \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g)$
is $\mathrm{K}=11.5$.
(a) Calculate the reaction quotient Q if initially $\mathrm{P}_{\mathrm{PCL} 3}=2.0 \mathrm{~atm}, \mathrm{P}_{\mathrm{C} 12}=6.0 \mathrm{~atm}$, and $\mathrm{P}_{\mathrm{PC} 15}$ $=0.10 \mathrm{~atm}$. State whether the reaction proceeds to the right or to the left as equilibrium is approached.
(b) Calculate $\mathrm{P}_{\mathrm{PCl} 3}, \mathrm{P}_{\mathrm{C} 12}$, and $\mathrm{P}_{\mathrm{PC} 15}$, at equilibrium.
(c) If the volume of the system is then increased, will the amount of PCl_{5} present increase or decrease?
4. At $1000 \mathrm{~K}, \mathrm{~K}_{\mathrm{p}}=19.9$ for the reaction $\mathrm{Fe}_{2} \mathrm{O}_{3}(s)+3 \mathrm{CO}(g) \leftrightharpoons 2 \mathrm{Fe}(s)+3 \mathrm{CO}_{2}(g)$. What are the equilibrium partial pressures of CO and CO_{2} if CO is the only gas present initially, at a partial pressure of 0.978 atm ?
5. In the gas phase at $400^{\circ} \mathrm{C}$, isopropyl alcohol decomposes to acetone, an important industrial solvent:
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}(g) \leftrightharpoons\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}(g)+\mathrm{H}_{2}(g) \quad \Delta \mathrm{H}=+57.3 \mathrm{~kJ}$

Worksheet 3

Does the amount of acetone increase, decrease, or remain the same when an equilibrium mixture of reactants and products is subjected to the following changes?
(a) The temperature is increased
(b) The volume is increased
(c) The addition of Argon
(d) H_{2} is added
(e) A catalyst is added

