Nuclear chemistry help sheet

1. Atomic Number and Mass Number

a. Atomic Notation – commonly used to specify the number of protons and neutrons in the atom

Mass number

 $\frac{235}{92}U$ Atomic symbol

Atomic number

- b. Atomic Number the number of protons
- c. Mass Number the number of protons + neutrons
- d. Number of neutrons = mass number atomic number
- e. Isotopes atoms of an element that have different number of neutrons. $^{31}_{15}P$ and $^{28}_{15}P$

 ${}^{1}_{1}H, {}^{2}_{1}H, \text{ and } {}^{3}_{1}H$

2. Common forms of radioactive decay

Decay Type	Particle	Particle	Particle	Change in	Change in
		Mass	Charge	mass number	Atomic number
Alpha	4_2 He or ${}^4_2\alpha$	4	2+	Decreases by 4	Decreases by 2
Beta	${}^{0}_{-1}\beta \text{ or } {}^{0}_{-1}e^{-}$	0	1-	No change	Increases by 1
Positron	${}^{0}_{+1}e \text{ or}{}^{0}_{+1}\beta$	0	1+	No change	Decreases by 1
Electron	$^{0}_{-1}\beta \text{ or }^{0}_{-1}e^{-1}$	0	1-	No change	Decreases by 1
Capture	-17 -1				
Gamma	ογ	0	0	No Change	No Change

3. Balancing nuclear equation

- a. Sum of reactants mass = sum of products mass
- b. Sum of reactants atomic numbers = sum of product atomic numbers
- c. Elements may change
- d. Example:

$${}^{18}_{9}\text{F} \rightarrow {}^{18}_{8}\text{O} + {}^{0}_{1}\text{e}$$

4. Half-lives and isotopic dating

- a. Radioactive decay follows first order kinetics (see kinetics handout).
- b. Half-life is characteristic of each isotope
- c. Relative abundance is used estimate the age of objects
 - i. Age of rock U-235 half-life of 4.5 billion years
 - ii. Organic materials in archeological sites C-14 half-life of 5730 years - Dates between 500 and 50, 000 years old
 - iii. Age of wines H(T)-3 half-life of 12.26 years dates up to 100vears

5. Fusion, Fission, Transmutation

- a. Fusion smaller atoms come together to form larger atoms
- b. Fission larger atoms break apart to form small atoms
- c. Transmutation (artificial) elements are converted from one to another