TYPE 1 (weak ACID)

(only a weak ACID put in solution)
For a weak acid (HA) in water:
$\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$
$K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$ and let $C_{\text {HA }}$ be the analytical concentration (label) of the weak acid

Our Equilibrium "ICE" Table

	$[\mathrm{HA}]$	$\left[\mathrm{H}^{+}\right]$	$\left[\mathrm{A}^{-}\right]$
initial	C_{HA}	0	0
change	$-x$	$+x$	$+x$
equilibrium	$C_{\mathrm{HA}}-x$	x	x

$$
\begin{gathered}
K_{\mathrm{a}}=\frac{x^{2}}{\left(\mathrm{C}_{\mathrm{HA}}-x\right)} \quad \text { Equation 1.1 } \\
K_{\mathrm{a}} C_{\mathrm{HA}}-K_{\mathrm{a}}(x)=x^{2} \\
0=x^{2}+K_{\mathrm{a}}(x)-K_{\mathrm{a}} \mathrm{C}_{\mathrm{HA}}
\end{gathered}
$$

$$
\left[\mathrm{H}^{+}\right]=\left[\mathrm{A}^{-}\right]=x=\frac{-K_{\mathrm{a}}+\sqrt{K_{\mathrm{a}}^{2}+4 K_{\mathrm{a}} \mathrm{C}_{\mathrm{HA}}}}{2}
$$

This equation is the exact solution for calculating the $\left[\mathrm{H}^{+}\right]$for any solution made by mixing a concentration of ONLY a weak acid in water. (What I have designated a "Type 1" problem)

If we are using a REASONABLE concentration for HA (somewhere between 1.0 M and 0.05 M) AND K_{a} is small enough (say less than 10^{-4}) we can make the following assumption:

$$
C_{\mathrm{HA}}-x \cong C_{\mathrm{HA}} \quad \text { all this is saying is that } \mathrm{x} \text { is so small compared to } \mathrm{C}_{\mathrm{HA}} \text {, it doesn't change it }
$$

So that Equation 1.1 shown above becomes

$$
K_{\mathrm{a}}=\frac{x^{2}}{\mathrm{C}_{\mathrm{HA}}}
$$

and solving:

$$
\left[\mathrm{H}^{+}\right]=\left[\mathrm{A}^{-}\right]=x=\sqrt{K_{\mathrm{a}} \mathrm{C}_{\mathrm{HA}}}
$$

Equation 1.2

This equation is the approximate solution for calculating the $\left[\mathrm{H}^{+}\right]$for any weak acid with $K_{\mathrm{a}}<10^{-4}$ when put in water.

