TYPE 1 (weak ACID)

(only a weak ACID put in solution)

For a weak acid (HA) in water: $HA + H_2O \rightleftharpoons H^+ + A^-$

 $K_{\rm a} = \frac{[{\rm H}^+][{\rm A}^-]}{[{\rm H}{\rm A}]}$ and let $C_{\rm HA}$ be the analytical concentration (label) of the weak acid

Our Equilibrium "ICE" Table

	[HA]	[H+]	[A ⁻]
initial	$C_{ m HA}$	0	0
change	- <i>x</i>	+ <i>x</i>	+ <i>x</i>
equilibrium	C _{HA} - x	x	x

$$K_{a} = \frac{x^{2}}{(C_{HA} - x)}$$
 Equation 1.1

$$K_{a}C_{HA} - K_{a}(x) = x^{2}$$

$$0 = x^{2} + K_{a}(x) - K_{a}C_{HA}$$

$$[H^{+}] = [A^{-}] = x = \frac{-K_{a} + \sqrt{K_{a}^{2} + 4K_{a}C_{HA}}}{2}$$

This equation is the exact solution for calculating the [H+] for any solution made by mixing a concentration of ONLY a weak acid in water. (What I have designated a "Type 1" problem)

If we are using a REASONABLE concentration for HA (somewhere between 1.0 M and 0.05 M) AND $K_{\rm a}$ is small enough (say less than 10⁻⁴) we can make the following assumption:

all this is saying is that \boldsymbol{x} is so small compared to $C_{HA},$ it doesn't change it $C_{\text{HA}} - x \cong C_{\text{HA}}$ So that Equation 1.1 shown above becomes

$$K_{\rm a} = \frac{x^2}{\rm C_{\rm HA}}$$

and solving:

$$[H^+] = [A^-] = x = \sqrt{K_a C_{HA}}$$

Equation 1.2

This equation is the <u>approximate</u> solution for calculating the [H⁺] for any weak acid with $K_a < 10^{-4}$ when put in water.