Corrections for Chemical Principles: The Quest for Insight, $3^{\text {rd }}$ edition

 by Peter Atkins and Loretta JonesCorrections to the second printing:
Page
F47 Example F.2, Step 3: Oxygen should be Nitrogen
F72 Ex. J10, line 7: "1.029\%" should be " 3.087 \%".
Line before Self-Test 1.1: "frequency near 700 nm " should be wavelength near 700 nm "
last line before paragraph summary: " $1+3+4+5+7=16$ " should be " $1+3+5+7=16$ ".
Fig. 1.39: The d-blocks are labeled incorrectly: $4 d$ should be $3 d$; $5 d$ should be $4 d ; 6 d$ should be $5 d ; 7 d$ should be $6 d$.

Fig. 1.50: The electron configuration for nitrogen has an extra electron. Remove the down arrow in the lower configuration and one of the down arrows in the upper configuration.

Fig. 1.52: The lower ion in the bismuth box: Sn should be Bi and Ti should be Tl (both places)
Structure 28: The S atom should have a lone pair of electrons.
Ex. 2.39: A carbon atom should be placed at the bottom of the first vertical line.
Figure legend 3.33, line 2 : exchange "right" and "left".
Ex. 3.9(d): NO_{2} should be NO_{2}^{-}(the nitrite ion).
Ex. 3.19, line 2: the formula for pyridine should be $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$.
Eq. 29 , at top of page, the exponent for the term in parentheses: $1 / 2$ should be $3 / 2$.
Self-Test 6.3B, line 3: delete the minus sign (heat output has no sign).
Example 6.3 Solution: Move the label for part (b) down to "Step 1".
Self-Test 6.5B, line 2: "energy left the system as heat" should be "energy entered the system as heat".

Self-Test 7.11A: Answer should be $+175.83 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$
Ex. 7.12, line 3: $\mathrm{C}_{2} \mathrm{HOH}_{3}$ should be $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$.
Example 9.4: the answer should be 1.7×10^{6}.
Self-Test 9.8A, line 2: "molar concentration" should be "partial pressure".

361

Structures at top of page: the organic group in the diamine, $\left(\mathrm{CH}_{2}\right)_{6}$, should be a benzene ring, $\mathrm{C}_{6} \mathrm{H}_{4}$, in two places.

C1 L.2B, last line: "396 kg" should be "396 g".
$\mathrm{C} 2 \quad 3.10 \mathrm{~B}$: The configuration of $\mathrm{O}_{2}{ }^{+}$should be $\mathrm{O}_{2}: \sigma_{2 s}{ }^{2} \sigma_{2 s}{ }^{* 2} \sigma_{2 p}{ }^{2} \pi_{2 p}{ }^{4} \pi_{2 p}{ }^{* 1}$.
C3 MT3.1B: Answer is 363 pm.
6.10B: $\Delta n=3 / 4 \mathrm{~mol}$, as the question refers to 1 mol Al . Therefore, the answer is $3.37 \times 10^{3} \mathrm{~kJ}$.

C11 F.17: Percentages to four significant figures are ethene $(85.63 \%)>$ heptane $(83.91 \%)>$ propanol (59.96\%).
H.3(a): Na should be K (2 places)
$\mathrm{H} .17(\mathrm{c})$ The correct equations are: $\mathrm{P}_{4}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{P}_{4} \mathrm{O}_{6}(\mathrm{~s}) ; \mathrm{P}_{4}(\mathrm{~s})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})$
C12 K.1(b): NaS should be $\mathrm{Na}_{2} \mathrm{~S}$.
K.5(c): The answer is -2 .
L.3(a): 507 should be 507.1
1.9: Answer should be $8.8236 \times 10^{-12} \mathrm{~m}$, or 8.8236 pm .
1.17: 10^{-3} should be 10^{3}.
1.47: The correct answers are:
a) $-1,0,+1$
b) $-2,-1,0,+1,+2$
c) $-1,0,+1$
d) $-3,-2,-1,0,+1,+2,+3$

C14 1.65(c): The answer should be $[\mathrm{Kr}] 4 d^{10} 5 s^{2} 5 p^{3}$.
1.69(b): The answer should be $4 s$.
1.89: Add (a) N and S .
1.95: Answers should have two significant figures.
1.107: The equation should be $\quad \int_{0}^{L}\left(\frac{2}{L}\right) \sin ^{2}\left(\frac{n \pi x}{L}\right) \mathrm{d} x=1$
2.31(c): $\mathrm{Tl}_{2} \mathrm{O}_{3}$.
2.45(a) Second structure is missing a lone pair on the first O atom.
2.75, line 1: Add a lone pair of electrons to the first N atom.
3.3(b): Slightly less than 120°.
3.9(b): There are three bond angles of 120°.
3.9(d): bent is the same as angular.
3.11(b): Remove a lone pair of electrons from the Te atom. Answers are then $\mathrm{AX}_{4} \mathrm{E}, 90^{\circ}$ and 120° Seesaw.
3.27(b) The O atom should have two lone pairs of electrons.
3.49(c), line 2 : "...because N is more electronegative and its orbitals are lower in energy.
3.65(d): The N atom should have a lone pair of electrons, not a single unbonded electron.
3.75: The double arrows should be a single double-headed arrow.
3.81: The equation is: $\quad \Delta E=\frac{h^{2}}{8 m N^{2} R^{2}}\left[\left(\frac{N}{2}+1\right)^{2}-\left(\frac{N}{2}\right)^{2}\right]=\frac{h^{2}(N+1)}{8 m N^{2} R^{2}}$

The answers should have only two significant figures.
4.89: The answer should be: $\quad f\left(10 v_{\text {rms }}\right) / f\left(v_{\text {rms }}\right)=100 \mathrm{e}^{-99 M v_{\text {rms }}{ }^{2} / 2 R T}$

No, the distribution changes with temperature.
5.65(c): Answer is pentane.
5.71: Add the equation $\quad r=\left[\left(2.936 \times 10^{5}\right) M / d\right]^{1 / 3}$
6.19 Units should be $\mathrm{kJ} \cdot\left({ }^{\circ} \mathrm{C}\right)^{-1}$
6.29 Answer has 3 significant figures.
6.39(b): The answer should be $1.47 \times 10^{3} \mathrm{~kJ}$.
6.41(a): 0.67 should be 19.2.
6.71(a): -1272 should be -597.
$6.93(\mathrm{~b}): 4.20 \times 10^{3} \mathrm{~kJ}$.
6.95(a) - 3.72 kJ
6.103, line 3: " 6 more moles" should be " 3 more moles".
7.27(b) 1-pentene will have a higher entropy.
7.35: The heat capacities are constant-pressure heat capacities, $C_{P, m}$
7.41(a): The answer has two significant figures.
7.67: Units for $\Delta S_{\text {fus }}{ }^{\circ}$ are $\mathrm{J} \cdot \mathrm{K}^{-1}$.
7.87: T should have 4 significant figures in each part.
8.15: Add (d) vapor.
8.49(a): 684 Torr
9.5 The answer should read:
(a) $K_{\mathrm{c}}=\frac{[\mathrm{COCl}][\mathrm{Cl}]}{[\mathrm{CO}]\left[\mathrm{Cl}_{2}\right]}$; (b) $K_{\mathrm{c}}=\frac{[\mathrm{HBr}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{Br}_{2}\right]}$; (c) $K_{\mathrm{c}}=\frac{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}{\left[\mathrm{H}_{2} \mathrm{~S}\right]^{2}\left[\mathrm{O}_{2}\right]^{3}}$
9.87 The answer should read

$$
\ln \frac{K_{c 2}}{K_{c 1}}=-\frac{\Delta H_{\mathrm{r}}^{\circ}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)-\Delta \ln \ln \left(\frac{T_{2}}{T_{1}}\right)
$$

9.91(e): products; (f) no effect
9.107: Values on x-axis are 250,300 , and 350 K
10.23(b): answer has two significant figures: 0.010
10.53: $\mathrm{pH}=4.21 ; K_{\mathrm{a}}=6.2 \times 10^{-5}$
10.61(d) 11.056
10.67(a): 1.8×10^{-6}
10.69(b) 6.11
10.97 (a) and (b): $1.00 \times 10^{-4} \mathrm{~mol} \cdot \mathrm{~L}^{-6}$ should be $1.00 \times 10^{-6} \mathrm{~mol} \cdot \mathrm{~L}^{-1}$
10.998 .5 should be 8.50 ; (a) 7.37×10^{-4} should be 7.37×10^{-6} (twice)
10.103(b): Add $\Delta H^{\circ}=+54 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}, \Delta S^{\circ}=+87 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$
10.119, last line: 5.82 should be 5.75 .
11.13(c): 11.6 should be 11.5
11.27: 79.5\%
11.35: Thymol blue can also be used.
11.53(b) $1.2 \times 10^{-16} \mathrm{~mol} \cdot \mathrm{~L}^{-1}$.
$11.55(\mathrm{~b}) 10^{-2}$ should be 10^{2}.
11.81: 4.2 should be 4.35
11.87(a) The answer should be 1.4×10^{-5}; (b) The answer should be 225 g .
11.97: The answer should be $2.2 \times 10^{-3} \mathrm{~mol} \cdot \mathrm{~L}^{-1}$.
11.107(a): 5.1 should be 5.07
11.109(a) The answer should be 3.5×10^{-18}.
$12.97-0.27 \mathrm{~V}$ should be -0.21 V .
12.103(a) Insert a semicolon before " pOH ".
13.31 The intercept in the equation should have 3 significant figures.
13.51 The equation for the plot is $y=-3.27 \times 10^{3} x+35.0$.
13.53: 40 should be 39
13.61: The answers should be (a) 1×10^{13}; (b) 2×10^{11}.
14.93(a): Correct the following values: $\mathrm{Cs}^{+}(5.88), \mathrm{Rb}^{+}(6.71), \mathrm{K}^{+}(7.25), \mathrm{Na}^{+}(9.80), \ldots \mathrm{Ba}^{+}(14.7)$, $\mathrm{Sr}^{+}(17.2), \mathrm{Ca}^{2+}(20.0)$. (Note that the ordering does not change.)
16.45(f): 10

C44 17.81(a) y-axis label: C should be C^{14}. (b): Replace plot with the one below:
(b)

C47 18.71 The empirical formula is $\mathrm{C}_{4} \mathrm{H}_{9}$. The molecular formula might be $\mathrm{C}_{8} \mathrm{H}_{18}$. In the last line, 2.5 should be 2.25 .

Corrections to the first printing:
83 Ex. 2.91, line 3 of table $(\mathrm{Z}=16)$, third column, 1 should be 0 .
$\mathrm{Pb}^{2+}(\mathrm{aq})$, Free energy of formation: "-14.43" should be "-24.43"
C12 The B with a sun icon in the center of each chemical equation should be replaced by an arrow.

