## ACID/BASE THEORY

For the ionization of water :

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}
$$ an equilibrium expression can be written:

$$
\begin{align*}
& K_{\mathrm{w}}= {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} } \\
& \quad-\text { or }- \\
& K_{\mathrm{w}}= {\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} }
\end{align*}
$$

$\boldsymbol{K}_{\mathrm{w}}$ is know as the ion product of water. In ANY aqueous solution this equilibrium is always present. One can always obtain the concentration of $\mathbf{H}^{+}$from the concentration of $\mathbf{O H}$ and vice versa. A strong acid will set the value of $\left[\mathrm{H}^{+}\right]$and then [ $\mathrm{OH}^{-}$] can be calculated. A strong base will set the value of $\left[\mathrm{OH}^{-}\right]$and then $\left[\mathrm{H}^{+}\right]$can be calculated.

The pH of a solution can be determine by the expression: $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$which means that $\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}$
In general, the " p " in pH is really a function: $\mathrm{p}(\mathrm{X})=-\log (\mathrm{X})$ but instead of writing $\mathrm{p}(\mathrm{X})$ we write pX .
So you can easily calculate values for $\mathrm{pOH}, \mathrm{pK}_{\mathrm{w}}$, etc...
This leads to the "-log" form of the above equation: $14=\mathrm{pH}+\mathrm{pOH}$
The ONLY time that $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$(definition of neutral water) is when they each equal $1.0 \times 10^{-7} \mathrm{M}$ which corresponds to a pH (and pOH for that matter) of 7.00 . This is neutral pH and is the pH of pure $\mathrm{H}_{2} \mathrm{O}$ (note this is only at $25^{\circ} \mathrm{C}$, however). pH values lower than 7 are acidic solutions while pH values higher than 7 are basic.

NOTE : ALL the questions in chapters 18 and 19 will fit into these equilibria and equations compare and contrast the similarities and differences in these two columns
$\underset{\text { For a weak acid (HA) in water: }}{\sim \text { A C IDS }} \longleftrightarrow \underset{\text { For a weak base }(\mathrm{B}) \text { in water: }}{ }$
$\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}$
$K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \quad\left[\mathrm{H}^{+}\right]=K_{\mathrm{a}} \frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}$
$\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$
For a conjugate acid ( $\mathrm{BH}^{+}$) of a weak base(B) in water:
$\mathrm{BH}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{B}$
$K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right][\mathrm{B}]}{\left[\mathrm{BH}^{+}\right]} \quad\left[\mathrm{H}^{+}\right]=K_{\mathrm{a}} \frac{\left[\mathrm{BH}^{+}\right]}{[\mathrm{B}]}$
$\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{[\mathrm{B}]}{\left[\mathrm{BH}^{+}\right]}$
NOTICE! You can NOT look up the $K_{\mathrm{a}}$ of $\mathrm{BH}^{+}$. You have to calculate it from the $K_{\mathrm{b}}$ of B :
$K_{\mathrm{a}}=\frac{K_{\mathrm{w}}}{K_{\mathrm{b}}}$

For a weak base (B) in water:
$\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{BH}^{+}+\mathrm{OH}^{-}$
$K_{\mathrm{b}}=\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{BH}^{+}\right]}{[\mathrm{B}]}$
$\left[\mathrm{OH}^{-}\right]=K_{\mathrm{b}} \frac{[\mathrm{B}]}{\left[\mathrm{BH}^{+}\right]}$
$\mathrm{pOH}=\mathrm{p} K_{\mathrm{b}}+\log \frac{\left[\mathrm{BH}^{+}\right]}{[\mathrm{B}]}$
For a conjugate base ( $\mathrm{A}^{-}$) of a weak acid (HA) in water:

$$
\begin{aligned}
& \mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HA}+\mathrm{OH}^{-} \\
& K_{\mathrm{b}}=\frac{\left[\mathrm{OH}^{-}\right][\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]} \quad\left[\mathrm{OH}^{-}\right]=K_{\mathrm{b}} \frac{\left[\mathrm{~A}^{-}\right]}{[\mathrm{HA}]} \\
& \mathrm{pOH}=\mathrm{p} K_{\mathrm{b}}+\log \frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}
\end{aligned}
$$

NOTICE! You can NOT look up the $K_{\mathrm{b}}$ of $\mathrm{A}^{-}$. You have to calculate it from the $K_{\mathrm{a}}$ of HA:

$$
K_{\mathrm{b}}=\frac{K_{\mathrm{w}}}{K_{\mathrm{a}}}
$$

