TYPE 1 (conj. BASE of weak acid)

(only the SALT of a weak acid put in solution)

For a salt of a weak acid (NaA) in water:

STEP 1: NaA (s) + H₂O \longrightarrow Na⁺ + A⁻ (100% ionization!!!)

STEP 2: $A^- + H_2O \implies HA + OH^-$

Note that A⁻ behaves EXACTLY like a weak base in water (a Type 1 problem for bases) and the equilibria is

 $K_{\rm b} = \frac{[{\rm OH}^-][{\rm HA}]}{[{\rm A}^-]}$ and remember $K_{\rm b}$ for A⁻ must be calculated from $K_{\rm a}$ for HA: $K_{\rm b} = \frac{K_{\rm w}}{K_{\rm a}}$

Now let C_{A} be the analytical concentration (label) of the conjugate base, A^- : Our Equilibrium "Chart"

	[A ⁻]	[OH·]	[HA]
initial	C _{A-}	0	0
change	- <i>X</i>	+x	+ <i>x</i>
final	С _{А-} - <i>х</i>	x	x

$$K_{\rm b} = \frac{x^2}{\left(C_{\rm A^{-}} - x\right)}$$
Equation 3.1
$$K_{\rm b}C_{\rm A^{-}} - K_{\rm b}(x) = x^2$$
$$0 = x^2 + K_{\rm b}(x) - K_{\rm b}C_{\rm A^{-}}$$

$$[OH^{-}] = [A^{-}] = x = \frac{-K_{b} + \sqrt{K_{b}^{2} + 4K_{b}C_{A^{-}}}}{2}$$

This equation is the <u>exact</u> solution for calculating the [OH⁻] for any solution made by mixing a concentration of ONLY a conjugate weak base, A⁻, in water.

If we are using a REASONABLE concentration for A⁻ (somewhere between 1.0 M and 0.05 M) AND $K_{\rm b}$ is small enough (say less than 10⁻⁴) we can make the following assumption:

$$C_A^- - x \cong C_A^-$$
 all this is saying is that x is so small compared to C_A^- , it doesn't change it

$$K_{\rm b} = \frac{x^2}{\rm C_{A^-}}$$

and solving:

$$[OH^{-}] = [HA] = x = \sqrt{K_b C_{A^{-}}}$$
 Equation 3.2

This equation is the <u>approximate</u> solution for calculating the [OH⁻] for any conjugate base, A⁻, of the weak acid, HA, where $K_{\rm b} < 10^{-4}$.