TYPE 1 (conj. BASE of weak acid)
 (only the SALT of a weak acid put in solution)

For a salt of a weak acid ($\mathrm{NaA)}$ in water:
STEP 1: $\quad \mathrm{NaA}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Na}^{+}+\mathrm{A}^{-} \quad$ (100\% ionization!!!)
STEP 2: $\quad \mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HA}+\mathrm{OH}^{-}$
Note that A^{-}behaves EXACTLY like a weak base in water (a Type 1 problem for bases) and the equilibria is $K_{\mathrm{b}}=\frac{\left[\mathrm{OH}^{-}\right][\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]} \quad$ and remember K_{b} for A must be calculated from K_{a} for HA: $\quad K_{\mathrm{b}}=\frac{K_{\mathrm{w}}}{K_{\mathrm{a}}}$
Now let C_{A} be the analytical concentration (label) of the conjugate base, A^{-}:
Our Equilibrium "Chart"

	$\left[\mathbf{A}^{-}\right]$	$\left[\mathbf{O H}^{-}\right]$	$[\mathbf{H A}]$
initial	$\mathrm{C}_{\mathrm{A}^{-}}$	0	0
change	$-x$	$+x$	$+x$
final	$\mathrm{C}_{\mathrm{A}^{-}}-x$	x	x

$$
\begin{gathered}
K_{\mathrm{b}}=\frac{x^{2}}{\left(\mathrm{C}_{\mathrm{A}^{-}}-x\right)} \quad \text { Equation 3.1 } \\
K_{\mathrm{b}} C_{\mathrm{A}^{-}}-K_{\mathrm{b}}(x)=x^{2} \\
0=x^{2}+K_{\mathrm{b}}(x)-K_{\mathrm{b}^{2}} \mathrm{~A}_{\mathrm{A}^{-}} \\
{\left[\mathrm{OH}^{-}\right]=\left[\mathrm{A}^{-}\right]=x=\frac{-K_{\mathrm{b}}+\sqrt{K_{\mathrm{b}}^{2}+4 K_{\mathrm{b}} \mathrm{C}_{\mathrm{A}^{-}}}}{2}}
\end{gathered}
$$

This equation is the exact solution for calculating the $\left[\mathrm{OH}^{-}\right]$for any solution made by mixing a concentration of ONLY a conjugate weak base, A^{-}, in water.

If we are using a REASONABLE concentration for A^{-}(somewhere between 1.0 M and 0.05 M) AND K_{b} is small enough (say less than 10^{-4}) we can make the following assumption:

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{A}^{-}}-x \cong \mathrm{C}_{\mathrm{A}^{-}} \quad \text { all this is saying is that } x \text { is so small compared to } \mathrm{C}_{\mathrm{A}^{-}} \text {, it doesn't change it } \\
& K_{\mathrm{b}}=\frac{x^{2}}{\mathrm{C}_{\mathrm{A}^{-}}}
\end{aligned}
$$

and solving:

$$
\left[\mathrm{OH}^{-}\right]=[\mathrm{HA}]=x=\sqrt{K_{\mathrm{b}} \mathrm{C}_{\mathrm{A}^{-}}} \quad \text { Equation } 3.2
$$

This equation is the approximate solution for calculating the $\left[\mathrm{OH}^{-}\right]$for any conjugate base, A^{-}, of the weak acid, HA, where $K_{\mathrm{b}}<10^{-4}$.

