TYPE 1 (weak BASE)

(only a weak BASE put in solution)

For a weak base (B) in water:

$$B + H_2O \implies OH^- + BH^+$$

 $K_{\rm b} = \frac{[OH^-][BH^+]}{[B]}$ and let $C_{\rm B}$ be the analytical concentration (label) of the weak base

Our Equilibrium "Chart"

	[B]	[OH [.]]	$[\mathbf{BH}^+]$
initial	C _B	0	0
change	- <i>X</i>	+x	+x
final	С _в - <i>х</i>	x	x

$$K_{\rm b} = \frac{x^2}{\left({\rm C}_{\rm B} - x\right)}$$
 Equation 1.1

$$K_{\rm b}C_{\rm B} - K_{\rm b}(x) = x^2$$

 $0 = x^2 + K_{\rm b}(x) - K_{\rm b}C_{\rm B}$

$$[OH^{-}] = [BH^{+}] = x = \frac{-K_{b} + \sqrt{K_{b}^{2} + 4K_{b}C_{B}}}{2}$$

This equation is the <u>exact</u> solution for calculating the [OH-] for any solution made by mixing a concentration of ONLY a weak base in water. (What I have designated a "Type 1" problem)

If we are using a REASONABLE concentration for B (somewhere between 1.0 M and 0.05 M) AND $K_{\rm b}$ is small enough (say less than 10⁻⁴) we can make the following assumption:

 $C_B - x \cong C_B$ all this is saying is that x is so small compared to C_B , it doesn't change it So that Equation 1.1 shown above becomes

$$K_{\rm b} = \frac{x^2}{\rm C_{\rm B}}$$

and solving:

 $[OH^{-}] = [BH^{+}] = x = \sqrt{K_{b}C_{B}}$ Equation 1.2

This equation is the <u>approximate</u> solution for calculating the [OH⁻] for any weak base with $K_b < 10^{-4}$ when put in water.