TYPE 1 (weak BASE)
 (only a weak BASE put in solution)

For a weak base (B) in water:
$\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{OH}^{-}+\mathrm{BH}^{+}$
$K_{\mathrm{b}}=\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{BH}^{+}\right]}{[\mathrm{B}]} \quad$ and let C_{B} be the analytical concentration (label) of the weak base
Our Equilibrium "Chart"

	$[\mathbf{B}]$	$[\mathbf{O H}]$	$\left[\mathbf{B H}^{+}\right]$
initial	C_{B}	0	0
change	$-x$	$+x$	$+x$
final	$\mathrm{C}_{\mathrm{B}}-x$	x	x

$$
\begin{aligned}
K_{\mathrm{b}} & =\frac{x^{2}}{\left(\mathrm{C}_{\mathrm{B}}-x\right)} \quad \text { Equation } 1.1 \\
K_{\mathrm{b}} C_{\mathrm{B}}-K_{\mathrm{b}}(x) & =x^{2} \\
0 & =x^{2}+K_{\mathrm{b}}(x)-K_{\mathrm{b}} \mathrm{C}_{\mathrm{B}}
\end{aligned}
$$

$$
\left[\mathrm{OH}^{-}\right]=\left[\mathrm{BH}^{+}\right]=x=\frac{-K_{\mathrm{b}}+\sqrt{K_{\mathrm{b}}^{2}+4 K_{\mathrm{b}} \mathrm{C}_{\mathrm{B}}}}{2}
$$

This equation is the exact solution for calculating the [OH-] for any solution made by mixing a concentration of ONLY a weak base in water. (What I have designated a "Type 1" problem)

If we are using a REASONABLE concentration for B (somewhere between 1.0 M and 0.05 M) AND K_{b} is small enough (say less than 10^{-4}) we can make the following assumption:

$$
C_{B}-x \cong C_{B} \quad \text { all this is saying is that } x \text { is so small compared to } C_{B} \text {, it doesn't change it }
$$

So that Equation 1.1 shown above becomes

$$
K_{\mathrm{b}}=\frac{x^{2}}{\mathrm{C}_{\mathrm{B}}}
$$

and solving:

$$
\left[\mathrm{OH}^{-}\right]=\left[\mathrm{BH}^{+}\right]=x=\sqrt{K_{\mathrm{b}} \mathrm{C}_{\mathrm{B}}} \quad \text { Equation } 1.2
$$

This equation is the approximate solution for calculating the $\left[\mathrm{OH}^{-}\right]$for any weak base with $K_{\mathrm{b}}<10^{-4}$ when put in water.

