TYPE 1 (weak ACID)

(only a weak ACID put in solution)

For a weak acid (HA) in water:

$$HA + H_2O \longrightarrow H_3O^+ + A^-$$

$$K_{\rm a} = \frac{[{\rm H}^+][{\rm A}^-]}{[{\rm HA}]}$$
 and let $C_{\rm HA}$ be the analytical concentration (label) of the weak acid

Our Equilibrium "Chart"

	[HA]	[H ⁺]	[A·]
initial	$C_{\scriptscriptstyle HA}$	0	0
change	-x	+x	+x
final	C_{HA} - x	x	Х

$$K_{a} = \frac{x^{2}}{\left(C_{HA} - x\right)}$$
 Equation 1.1
$$K_{a}C_{HA} - K_{a}(x) = x^{2}$$

$$\mathbf{A}_{\mathbf{a}} \mathbf{C}_{\mathbf{H}\mathbf{A}} \qquad \mathbf{A}_{\mathbf{a}} (x) = x$$

$$0 = x^2 + K_{\mathbf{a}}(x) - K_{\mathbf{a}} \mathbf{C}_{\mathbf{H}\mathbf{A}}$$

$$[H^+] = [A^-] = x = \frac{-K_a + \sqrt{K_a^2 + 4K_aC_{HA}}}{2}$$

This equation is the <u>exact</u> solution for calculating the [H⁺] for any solution made by mixing a concentration of ONLY a weak acid in water. (What I have designated a "Type 1" problem)

If we are using a REASONABLE concentration for HA (somewhere between 1.0 M and 0.05 M) AND K_a is small enough (say less than 10^{-4}) we can make the following assumption:

$$C_{HA}$$
 - $x \cong C_{HA}$ all this is saying is that x is so small compared to C_{HA} , it doesn't change it

So that Equation 1.1 shown above becomes

$$K_{\rm a} = \frac{x^2}{\rm C_{\rm HA}}$$

and solving:

$$[H^+] = [A^-] = x = \sqrt{K_a C_{HA}}$$
 Equation 1.2

This equation is the <u>approximate</u> solution for calculating the [H⁺] for any weak acid with $K_a < 10^{-4}$ when put in water.