McCord CH302
unique: 50015
MWF 2pm - 3pm

Exam 1

Fall 2018

Sep 19, 2018
Wednesday 7:30-9:00 PM
BUR 106

Remember to refer to the Periodic Table handout that is separate from this exam copy.

NOTE: Please keep this exam copy intact (all pages still stapled including this cover page). You must turn in ALL the materials that were distributed. This means that you turn in your exam copy (name and signature included), bubble sheet, periodic table handout, and all scratch paper. Please also have your UT ID card ready to show as well.

This print-out should have 20 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering.

0015.0 points

A 335 g scoop of ice at $-15^{\circ} \mathrm{C}$ is added to 836 g of hot water at $70^{\circ} \mathrm{C}$ in an insulated container. All the ice melts and the temperature reaches equilibrium. What is the final temperature inside the container?

1. $17^{\circ} \mathrm{C}$
2. $51^{\circ} \mathrm{C}$
3. $22^{\circ} \mathrm{C}$
4. $28^{\circ} \mathrm{C}$
5. $13{ }^{\circ} \mathrm{C}$
6. $25^{\circ} \mathrm{C}$
7. $39^{\circ} \mathrm{C}$
8. $30^{\circ} \mathrm{C}$
9. $45^{\circ} \mathrm{C}$
10. $34^{\circ} \mathrm{C}$

002 (part 1 of 3) 5.0 points
Refer to the following phase diagram for this question and the next two questions.

What is the normal boiling point of this sub-
stance?

1. $308^{\circ} \mathrm{C}$
2. $240^{\circ} \mathrm{C}$
3. $130^{\circ} \mathrm{C}$
4. $-90^{\circ} \mathrm{C}$
5. $-60^{\circ} \mathrm{C}$
6. $200^{\circ} \mathrm{C}$
7. $278{ }^{\circ} \mathrm{C}$

003 (part 2 of 3$) 5.0$ points

Refer to the phase diagram in part 1. What is the critical temperature for this substance?

1. $308^{\circ} \mathrm{C}$
2. $-90^{\circ} \mathrm{C}$
3. $-60^{\circ} \mathrm{C}$
4. $200^{\circ} \mathrm{C}$
5. $278{ }^{\circ} \mathrm{C}$
6. $130^{\circ} \mathrm{C}$
7. $240{ }^{\circ} \mathrm{C}$

004 (part 3 of 3) 5.0 points
Refer once again to the phase diagram in part 1. Which phase has the lowest free energy for this substance at 0.01 atm and $60^{\circ} \mathrm{C}$?

1. liquid
2. all have equal free energy
3. gas
4. solid
$005 \quad 5.0$ points
Hummingbird food is a sugar solution, made
as follows: 1 cup water plus $1 / 4$ cup sugar (sucrose, $342.3 \mathrm{~g} / \mathrm{mol}$). What is the molality of sugar in hummingbird food? Here are some useful conversion factors:
1 cup $=0.2366 \mathrm{~L} ; 1$ cup sugar $=200 \mathrm{~g}$ sugar
5. 0.146 m
6. 0.617 m
7. 0.0118 m
8. 0.000619 m
9. 0.0691 m

0065.0 points

The lattice energy for MX is $455 \mathrm{~kJ} / \mathrm{mol}$ and it's heat of hydration is $-345 \mathrm{~kJ} / \mathrm{mol}$. What is the heat of solution for MX?

1. $110 \mathrm{~kJ} / \mathrm{mol}$
2. $800 \mathrm{~kJ} / \mathrm{mol}$
3. $-800 \mathrm{~kJ} / \mathrm{mol}$
4. $151 \mathrm{~kJ} / \mathrm{mol}$
5. $133 \mathrm{~kJ} / \mathrm{mol}$
6. $-110 \mathrm{~kJ} / \mathrm{mol}$
$7.89 \mathrm{~kJ} / \mathrm{mol}$

$007 \quad 5.0$ points

Which of the following substances would you predict might evaporate the fastest?

1. $\mathrm{C}_{10} \mathrm{H}_{22}$
2. $\mathrm{C}_{6} \mathrm{H}_{14}$
3. $\mathrm{C}_{8} \mathrm{H}_{18}$
4. $\mathrm{C}_{12} \mathrm{H}_{24}$

0085.0 points

The vapor pressure of all liquids

1. is the same at their freezing points.
2. decreases with the increasing volume of the container.
3. increases with temperature.
4. is the same at $100^{\circ} \mathrm{C}$.
5. increases with volume of liquid present.

009 (part 1 of 2) 5.0 points
The following is the plot of vapor pressure vs temperature for three substances, A, B, and C.

Which, if any, of these substances would be a gas at SATP?

1. A
2. A and C
3. A and B
4. B
5. none
6. B and C
7. all 3 are gases
8. C

Which ones are gases at STP?

1. A
2. only I
3. III and IV
4. C
5. A and B
6. B and C
7. A and C
8. B
9. none
10. all 3 are gases

0115.0 points

Estimate the enthalpy of vaporization of CCl_{4} given that at $25^{\circ} \mathrm{C}$ and $58^{\circ} \mathrm{C}$ its vapor pressure is 107 and 405 torr, respectively. Assume that the enthalpy of vaporization is independent of the temperature.

1. $142 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
2. $33.1 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
3. $48.6 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
4. $3.98 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
5. $486 \mathrm{~J} \cdot \mathrm{~mol}^{-1}$

0125.0 points

The vapor pressure of a pure liquid depends on which of the following
I. the volume of the liquid
II. the volume of the gas
III. the surface area of the liquid
IV. the temperature

1. only III
2. I and II
3. only II
4. all of them
5. only IV

$013 \quad 5.0$ points

Consider an ideal gas dissolving into a liquid. Which of the following is/are true?
I) ΔS is negative for this process.
II) $\Delta H_{\text {solution }}$ is positive for this process.
III) This process only occurs at high enough temperatures.
IV) $\Delta H_{\text {lattice }}$ is equal to zero for the gas.

1. I only
2. I, II, and IV only
3. I and III only
4. I and II only
5. I, III, and IV only
6. I, II, III, and IV

7. I and IV only

$014 \quad 5.0$ points

As the temperature of water sample is decreased, we expect to see $a(n)$ (decrease/increase) in the solubility of (all/some) dissolved gases.

1. increase, all
2. increase, some
3. decrease, some
4. decrease, all

$015 \quad 5.0$ points

Which of the following statements about col-
ligative properties of aqueous solutions is FALSE?

1. Osmosis is a colligative property.
2. Colligative properties only depend on the number of solute particles present in solution.
3. The higher the concentration of solute in the solution, the higher the vapor pressure of the solvent.
4. For a given solution, the freezing point will be lowered more than the boiling point will be raised.
$016 \quad 5.0$ points
Consider the following vapor pressure diagram for a binary liquid containing solvents A and B .

If 3 moles of A and 2 moles of B are mixed, what is the vapor pressure of the solution?

1. 46 torr
2. 28 torr
3. 50 torr
4. 62 torr
5. 54 torr
6. 38 torr

$017 \quad 5.0$ points

What is the boiling point elevation of a solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}(142.1 \mathrm{~g} / \mathrm{mol}$, complete disso-
ciation) made by dissolving 10.0 g of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ into 250 g water $\left(K_{\mathrm{b}}=0.512^{\circ} \mathrm{C} / \mathrm{m}\right)$?

1. $0.288^{\circ} \mathrm{C}$
2. $0.108^{\circ} \mathrm{C}$
3. $0.144^{\circ} \mathrm{C}$
4. $0.576^{\circ} \mathrm{C}$
5. $0.363^{\circ} \mathrm{C}$
6. $0.432^{\circ} \mathrm{C}$
$018 \quad 5.0$ points
When 20.0 grams of an unknown compound are dissolved in 500 grams of benzene, the freezing point of the resulting solution is $3.77^{\circ} \mathrm{C}$. The freezing point of pure benzene is $5.48^{\circ} \mathrm{C}$, and its freezing point depression constant is $K_{\mathrm{f}}=5.12^{\circ} \mathrm{C} /$ molality. What is the molecular weight of the unknown compound?
7. 120 grams $/ \mathrm{mole}$
8. 100 grams/mole
9. $80.0 \mathrm{grams} / \mathrm{mole}$
10. 140 grams/mole
11. 160 grams/mole

$019 \quad 5.0$ points

What is the osmotic pressure of a solution that contains 4.56×10^{-3} moles of lactose in 100 mL of solution at $25^{\circ} \mathrm{C}$?

1. 1053 torr
2. 71 torr
3. 848 torr
4. 536 torr
5. 113 torr
0205.0 points

Which of the following solutes is likely to be most soluble in water?

1. ethanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)$
2. carbon tetrachloride $\left(\mathrm{CCl}_{4}\right)$
3. Br_{2}
4. CS_{2}
