HW13 - First Law & Calorimetry

① This is a preview of the published version of the quiz

Started: Nov 8 at 5:47pm

Quiz Instructions

Homework 13 - First Law & Calorimetry

Question 1	1 pts
A 100 W electric heater (1 W = 1 J/s) operates for 11 min to heat the gas in a cylinder. At the same time, the gas expagainst a constant atmospheric pressure of 3.527 atm. What is the change in internal energy of the gas?	ands from 1 L to 6 L
○ 62.47 kJ	
○ 64.21 kJ	
○ 48.37 kJ	
○ 67.79 kJ	
Question 2	1 pts
The definition of internal energy is ∆U = q + w	
Which of these three values are state functions? Select all of the correct answers.	
□ q	
□ ΔU	
□ w	
Question 3	1 pts
When 2.00 kJ of energy is transferred as heat to nitrogen in a cylinder fitted with a piston with an external pressure on nitrogen gas expands from 2.00 to 5.00 L. What is the change in internal energy of this system?	f 2.00 atm, the
○ 0	
○ -2.61 kJ	
○ +2.61 kJ	
○ +1.39 kJ	
○ -0.608 kJ	

Question 4	1 pts
A system had 150 kJ of work done on it and its internal energy increased by 60 kJ. How much energy did the system gain or lose neat?	e as
○ The system gained 90 kJ of energy as heat.	
○ The system gained 210 kJ of energy as heat.	
○ The system lost 90 kJ of energy as heat.	
○ The system gained 60 kJ of energy as heat.	
○ The system lost 210 kJ of energy as heat.	
Question 5	1 pts
If a process is carried out at constant pressure and the volume of the system decreases, then ΔV is Select] the work is Select].	♦ and
Question 6	1 pts
Which of the following will best help determine the direction of heat flow in a system? internal energy	
○ work	
○ temperature	
o pressure	
o enthalpy	
Question 7	1 pts
Which of the following statements concerning the first law of thermodynamics is/are true? Select all of the correct answers.	·
☐ The universe is an isolated system.	
☐ The universe is an isolated system. ☐ Internal energy lost by a system is always gained by the surroundings.	

1 pts

Question 8

○ 640 J	
○ -3.40 kJ	
○ -640 J	
○ 3.40 kJ	
Question 9	1 pt
When 4.00 kJ of energy is transferred as heat to nitrogen in a cylinder fitted with a piston at gas expands from 1.00 L to 4.00 L against this constant pressure. What is ΔU for the proces	
○ +3.09 kJ	
○ -4.91 kJ	
○ -0.912 kJ	
○ +4.91 kJ	
Question 10	1 p
A piece of metal with a mass of 22 g at 92 °C is placed in a calorimeter containing 53.7 g of	
A piece of metal with a mass of 22 g at 92 °C is placed in a calorimeter containing 53.7 g of mixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no e	water at 21 °C. The final temperature of the
A piece of metal with a mass of 22 g at 92 °C is placed in a calorimeter containing 53.7 g of mixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no $^{\circ}$ -1.3 x 10 ⁴ J g ⁻¹ °C ⁻¹	water at 21 °C. The final temperature of the
A piece of metal with a mass of 22 g at 92 °C is placed in a calorimeter containing 53.7 g of mixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no enterprise of the specific heat capacity of the metal? Assume that there is no enterprise of the specific heat capacity of the metal? Assume that there is no enterprise of the specific heat capacity of the metal? Assume that there is no enterprise of the specific heat capacity of the metal? Assume that there is no enterprise of the specific heat capacity of the metal? Assume that there is no enterprise of the specific heat capacity of the metal? Assume that there is no enterprise of the specific heat capacity of the metal? Assume that there is no enterprise of the specific heat capacity of the metal? Assume that there is no enterprise of the specific heat capacity of the metal? Assume that there is no enterprise of the specific heat capacity of the metal? Assume that there is no enterprise of the specific heat capacity of the metal? Assume that there is no enterprise of the specific heat capacity of the metal? Assume that there is no enterprise of the specific heat capacity of the metal? Assume that there is no enterprise of the specific heat capacity of the metal? Assume that there is no enterprise of the specific heat capacity of the metal?	water at 21 °C. The final temperature of the
A piece of metal with a mass of 22 g at 92 °C is placed in a calorimeter containing 53.7 g of mixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no e -1.3 x 10 ⁴ J g ⁻¹ °C ⁻¹ -9.5 J g ⁻¹ °C ⁻¹	water at 21 °C. The final temperature of the
A piece of metal with a mass of 22 g at 92 °C is placed in a calorimeter containing 53.7 g of mixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no entire of the containing 53.7 g of mixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no entire of the containing 53.7 g of mixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no entire of the containing 53.7 g of mixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no entire of the containing 53.7 g of mixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no entire of the containing 53.7 g of mixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no entire of the containing 53.7 g of mixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no entire of the containing t	water at 21 °C. The final temperature of the
A piece of metal with a mass of 22 g at 92 °C is placed in a calorimeter containing 53.7 g of nixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no entire in the containing 53.7 g of nixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no entire in the containing 53.7 g of nixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no entire in the containing 53.7 g of nixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no entire in the containing 53.7 g of nixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no entire in the containing 53.7 g of nixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no entire in the containing 53.7 g of nixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no entire in the containing 53.7 g of nixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no entire in the containing 53.7 g of nixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no entire in the containing 53.7 g of nixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no entire in the containing 53.7 g of nixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no entire in the containing 53.7 g of nixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no entire in the containing 53.7 g of nixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no entire in the containing for nixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no entire in the containing for nixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that the containing for nixture is 55.3 °C. What is the capacity of the containing for nixture i	water at 21 °C. The final temperature of the energy lost to the surroundings.
a piece of metal with a mass of 22 g at 92 °C is placed in a calorimeter containing 53.7 g of nixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no entire in the content of the metal of t	water at 21 °C. The final temperature of the energy lost to the surroundings.
piece of metal with a mass of 22 g at 92 °C is placed in a calorimeter containing 53.7 g of nixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no $^{\circ}$	water at 21 °C. The final temperature of the energy lost to the surroundings.
piece of metal with a mass of 22 g at 92 °C is placed in a calorimeter containing 53.7 g of nixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no $e^{-1.3 \times 10^4} \mathrm{J} \mathrm{g}^{-1} \mathrm{°C}^{-1}$ $-9.5 \mathrm{J} \mathrm{g}^{-1} \mathrm{°C}^{-1}$ $9.5 \mathrm{J} \mathrm{g}^{-1} \mathrm{°C}^{-1}$ $1.3 \times 10^4 \mathrm{J} \mathrm{g}^{-1} \mathrm{°C}^{-1}$ Question 11 Consider the following specific heat capacities: $\frac{1}{120} \mathrm{G} \mathrm{G} $	water at 21 °C. The final temperature of the energy lost to the surroundings.
A piece of metal with a mass of 22 g at 92 °C is placed in a calorimeter containing 53.7 g of mixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no entire in the containing 53.7 g of mixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no entire in the containing 53.7 g of mixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no entire in the containing 53.7 g of mixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no entire in the containing 53.7 g of mixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no entire in the containing 53.7 g of mixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no entire in the containing 53.7 g of mixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no entire in the containing 53.7 g of mixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no entire in the containing 53.7 g of mixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no entire in the containing 53.7 g of mixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no entire in the containing for the containin	water at 21 °C. The final temperature of the energy lost to the surroundings.
A piece of metal with a mass of 22 g at 92 °C is placed in a calorimeter containing 53.7 g of nixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no 6 -1.3 x 10 ⁴ J g ⁻¹ °C ⁻¹ -9.5 J g ⁻¹ °C ⁻¹ 9.5 J g ⁻¹ °C ⁻¹ 1.3 x 10 ⁴ J g ⁻¹ °C ⁻¹ Question 11 Consider the following specific heat capacities: 1 ₂ O (s) = 2.09 J/g·°C 1 ₂ O (l) = 4.18 J/g·°C The heat of fusion for water is 334 J/g and its heat of vaporization is 2260 J/g. Calculate the ce at -36°C completely to liquid water at 35°C.	water at 21 °C. The final temperature of the energy lost to the surroundings.
A piece of metal with a mass of 22 g at 92 °C is placed in a calorimeter containing 53.7 g of nixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no entire in the containing 53.7 g of nixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no entire in the containing 53.7 g of nixture is 55.3 °C. What is the specific heat capacity of the metal? Assume that there is no entire in the containing 53.7 g of nixture is no entire in the containing 53.7 g of nixture is no entire in the containing 53.7 g of nixture is no entire in the containing 53.7 g of nixture is no entire in the containing 53.7 g of nixture is no entire in the containing 53.7 g of nixture is no entire in the containing 53.7 g of nixture is no entire in the containing 53.7 g of nixture is no entire in the containing 53.7 g of nixture is no entire in the containing 53.7 g of nixture is no entire in the containing 53.7 g of nixture is no entire in the metal? Assume that there is no entire is no entire is no entire in the containing 53.7 g of nixture is no entire is no entire in the containing 53.7 g of nixture is no entire is n	water at 21 °C. The final temperature of the energy lost to the surroundings.

Question 12	1 pts
The specific heat for liquid argon and gaseous argon is 25.0 J/mol·°C and 20.8 J/mol·°C, respective argon is 6506 J/mol. How much energy is required to convert 1 mole of liquid Ar from 5°C below its at 5°C above its boiling point?	
○ 6610 J	
○ 125 J	
○ 6631 J	
○ 229 J	
○ 6735 J	
Question 13	1 pts
Carbon monoxide reacts with oxygen to form carbon dioxide by the following reaction:	
2 CO(g) + O ₂ (g) \rightarrow 2CO ₂ (g) ΔH for this reaction is -135.28 kcal. How much heat would be released if 12.0 moles of carbon mon	oxide reacted with sufficient oxygen to
$2CO(g) + O_2(g) \rightarrow 2CO_2(g)$ ΔH for this reaction is -135.28 kcal. How much heat would be released if 12.0 moles of carbon mon produce carbon dioxide? Use only the information provided in this question.	oxide reacted with sufficient oxygen to
$2CO(g) + O_2(g) \rightarrow 2CO_2(g)$ ΔH for this reaction is -135.28 kcal. How much heat would be released if 12.0 moles of carbon monoproduce carbon dioxide? Use only the information provided in this question. 412 kcal	oxide reacted with sufficient oxygen to
$2CO(g) + O_2(g) \rightarrow 2CO_2(g)$ ΔH for this reaction is -135.28 kcal. How much heat would be released if 12.0 moles of carbon mon	oxide reacted with sufficient oxygen to
$2CO(g) + O_2(g) \rightarrow 2CO_2(g)$ ΔH for this reaction is -135.28 kcal. How much heat would be released if 12.0 moles of carbon mon produce carbon dioxide? Use only the information provided in this question. 412 kcal	oxide reacted with sufficient oxygen to
812 kcal135 kcal1620 kcal	
2CO(g) + O ₂ (g) → 2CO ₂ (g) ΔH for this reaction is -135.28 kcal. How much heat would be released if 12.0 moles of carbon monoproduce carbon dioxide? Use only the information provided in this question. 412 kcal 812 kcal 135 kcal 1620 kcal	oxide reacted with sufficient oxygen to
AH for this reaction is -135.28 kcal. How much heat would be released if 12.0 moles of carbon monoroduce carbon dioxide? Use only the information provided in this question. 412 kcal 812 kcal 135 kcal 1620 kcal Question 14 What mass of liquid ethanol (C₂H₅OH) must be burned to supply 500 kJ of heat? The standard entite the standard entite that the standard entities the standard entite that the standard entities that the standard entities that the standard entitle that the standard en	1 pt:
AH for this reaction is -135.28 kcal. How much heat would be released if 12.0 moles of carbon monoroduce carbon dioxide? Use only the information provided in this question. 412 kcal 812 kcal 135 kcal 1620 kcal Question 14 What mass of liquid ethanol (C₂H₅OH) must be burned to supply 500 kJ of heat? The standard entit (is -1368 kJ/mol.	1 pt:
AH for this reaction is -135.28 kcal. How much heat would be released if 12.0 moles of carbon monoroduce carbon dioxide? Use only the information provided in this question. 412 kcal 812 kcal 135 kcal 1620 kcal What mass of liquid ethanol (C₂H₅OH) must be burned to supply 500 kJ of heat? The standard enth (S is -1368 kJ/mol.)	1 pt:
2CO(g) + O₂(g) → 2CO₂(g) ΔH for this reaction is -135.28 kcal. How much heat would be released if 12.0 moles of carbon mon produce carbon dioxide? Use only the information provided in this question. 412 kcal 812 kcal	1 pts

1 pts

○ 7 kJ

Question 15

Burning 1 mol of methane in oxygen to form $CO_2(g)$ and $H_2O(g)$ produces 803 kJ of energy. How much energy is produced when 3 mol of methane is burned?
○ 803 kJ
○ 2409 kJ
○ 1606 kJ
○ 268 kJ
Question 16 1 pt
Consider the following chemical equation:
$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(l)$ $\Delta H = -2220 \text{ kJ/mol rxn}$
How much thermal energy is given off when 11.0 g of propane gas (C ₃ H ₈) is burned at constant pressure?
○ 26.0 kJ
○ 555 kJ
○ 2220 kJ
○ 1670 kJ
Question 17
For a certain reaction at constant pressure, the change in internal energy is -52 kJ. In addition, the system does 46 kJ of expansion work What is ΔH for this process?
○ 98 kJ
○ 6 KJ
○ -98 kJ
○ -6 kJ
Question 18 1 pt
If the products of a reaction have higher energy than the reactants, then the reaction
is not spontaneous.
is endothermic.
is exothermic.

Questio	າ 19		1 pts
The specifi	c heats and densities of	several material	s are given below:
	Specific Heat (cal/g·°C)		
Brick	0.220	2.0	
Concrete	0.270	2.7	
Steel	0.118	7	
Water	1.00	1.00	
Calculate t		re produced by the	ne addition of 1 kcal of heat to 100 g of steel.
○ 37.0°C			
84.7°C			
○ 1.43°C			
○ 1.18°C			
Ouestier	20		1 nto
Questio	1 20		1 pts
-5.92 x			
○ -1.15 x	10 ⁴ kJ/mol		
○ -4.52 x	10 ³ kJ/mol		
Questio	າ 21		1 pts
observed.	What is ΔU of the reaction	on for the combus	in a bomb calorimeter containing 3000 g of water, a temperature rise of 0.285°C is stion of compound X? The hardware component of the calorimeter has a heat capacity $g \cdot ^{\circ}C$, and the MW of X is 56.0 g/mol.
○ 538 kJ/r	mol		
○ -538 kJ/	mol		
○ -4660 k	J/mol		
○ 4660 kJ	/mol		
Question	າ 22		1 pts

Nitric acid can be manufactured in a n	nulti-step process, during which nitric oxide is oxidized to create nitrogen dioxide.	
$2NO\ (g) + O_2\ (g) \to 2NO_2\ (g)$		
Calculate the standard reaction entha	lpy for the above reaction using the following thermodynamic data.	
$N_2(g) + O_2(g) \rightarrow 2NO(g)$ $\Delta H_1^\circ =$	180.5 kJ/molrxn	
$N_2(g) + 2O_2(g) \rightarrow 2NO_2(g)$ $\Delta H^{\circ}_2 =$	66.4 kJ/molrxn	
100.3 kJ/mol rxn		
○ -252.4 kJ/mol rxn		
-246.9 kJ/mol rxn		
○ -114.1 kJ/mol rxn		
Question 23		1 pts
Calculate the standard reaction entha	lpy for the following chemical equation.	
$CH_4(g) + H_2O(g) \rightarrow CO(g) + 3H_2(g)$		
	uations to solve for the change in enthalpy.	
$2H_2(g) + CO(g) \rightarrow CH_3OH(I)$	ΔH° = -128.3 kJ/mol	
$2CH_4(g) + O_2(g) \rightarrow 2CH_3OH(I)$	ΔH° = -328.1 kJ/mol	
$2H_{2}\left(g\right) +O_{2}\left(g\right) \rightarrow 2H_{2}O\left(g\right)$	ΔH° = -483.6 kJ/mol	
+206.1 kJ/mol		
+155.5 kJ/mol		
+42.0 kJ/mol		
+216 kJ/mol		
Question 24		1 pts
Calculate the standard enthalpy chang	ge for the following chemical equation.	
2HCl (g) + F_2 (g) \rightarrow 2HF (l) + Cl_2 (g)		
Use the following thermochemical equ	uations to solve for the change in enthalpy.	
$4HCI (g) + O_2 (g) \rightarrow 2H_2O (I) + 2CI_2 (g)$		
$\frac{1}{2} H_2(g) + \frac{1}{2} F_2(g) \rightarrow HF(I)$	$\Delta H^{\circ} = -600.0 \text{ kJ/mol rxn}$	
$H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(I)$	ΔH° = -285.8 kJ/mol rxn	
-1116.6 kJ/mol rxn		
+1088.2 kJ/mol rxn		
516.6 kJ/mol rxn		
-1088.2 kJ/mol rxn		

○ +1116.6 kJ/mol rxn	
○ +1015.4 kJ/mol rxn	
○ -1587.2 kJ/mol rxn	
○ -1015.4 kJ/mol rxn	
○ +516.6 kJ/mol rxn	
○ +1587.2 kJ/mol rxn	
Question 25	1 pts
Calculate the standard enthalpy change for the following chemical equation.	
$4\text{FeO (s)} + O_2(g) \rightarrow 2\text{Fe}_2O_3(s)$	
Use the following thermochemical equations to solve for the change in enthalpy.	
Fe (s) + $\frac{1}{2}$ O ₂ (g) \rightarrow FeO (s) $\Delta H = -269$ kJ/mol	
2Fe (s) + 3/2 O_2 (g) \rightarrow Fe ₂ O_3 (s) $\Delta H = -825 \text{ kJ/mol}$	
○ -556 kJ/mol	
○ -2726 kJ/mol	
○ -574 kJ/mol	
○ 556 kJ/mol	
○ 574 kJ/mol	
Question 26	1 pts
Calculate the enthalpy change for the following chemical equation.	
$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$	
Use the following thermochemical data to solve for the change in enthalpy.	
ΔH_f for $SO_2(g) = -16.9$ kJ/mol	
ΔH_f for $SO_3(g) = -21.9 \text{ kJ/mol}$	
○ -77.6 kJ/mol rxn	
○ -10.0 kJ/mol rxn	
○ -5.0 kJ/mol rxn	
○ +5.0 kJ/mol rxn	
Overtion 07	44
Question 27	1 pts
Which of the following substances have ΔH_f° = 0? Select all of the correct answers.	

□ Na (s)	
□ F ₂ (g)	
□ HCI (g)	
C (s, diamond)	
☐ HCl (aq)	
☐ C (s, graphite)	
Question 28	1 pts
Calculate the average S–F bond energy in SF $_6$ using the following ΔH_f values:	
SF ₆ (g) = -1209 kJ/mol	
S (g) = 279 kJ/mol	
F (g) = 79 kJ/mol	
○ 289 kJ/mol bonds	
○ 196 kJ/mol bonds	
○ 582 kJ/mol bonds	
○ 327 kJ/mol bonds	
○ 416 kJ/mol bonds	
Question 29	1 pts
Using the bond energy data provided, calculate ΔH for the following reaction:	
$H_2(g) + CI_2(g) \rightarrow 2HCI(g)$	
Bond Bond Energy (kJ/mol)	
H_H 436	
CI-CI 242	
H–CI 432	
○ 186 kJ/mol	
○ -186 kJ/mol	
○ 246 kJ/mol	
○ -246 kJ/mol	

Question 30 1 pts

The standard molar enthalpy of formation of $NH_3(g)$ is -46.11 kJ/mol. What is the standard molar internal energy of formation of $NH_3(g)$?

○ -2525 kJ/mol	
○ 2433 kJ/mol	
○ -48.59 kJ/mol	
○ -43.63 kJ/mol	

Quiz saved at 5:47pm

Submit Quiz