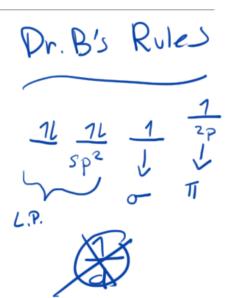
Unit 4 Review 1

VALENCE BOND AND MOLECULAR ORBITAL THEORIES

Valence Bond vs. Molecular Orbital Theory

Valence Bond Theory

- Hybrid Orbitals: sp, sp², sp³, sp³d, sp³d²
- Sigma and pi bonds
- Focuses on the electron "clouds"
- Depends on the number of electron-dense regions
- Justifies VSEPR by creating hybrid orbitals from pure atomic orbitals (Unit 2)
- Practical, but not fully accurate especially when it comes to physical properties and delocalized electrons

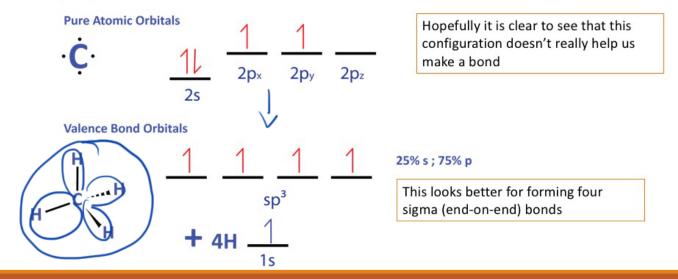

tybrids

- Molecular Orbital Theory
 - Diagrams
 - Answers three fundamental questions regarding your molecule: bond order, magnetism, HOMO-LUMO gap
 - Sigma and pi orbitals
 - Focuses on the electrons as "waves"
 - Depends on the number of electrons
 - Accurate, but very complex for polyatomic molecules; important for physical properties and delocalization of electrons

Bonds, Antibonds

Valence Bond Theory

- Valence Bond Theory explains the behavior of the valence orbitals of bonding atoms by suggesting that pure atomic orbitals can form energetically favorable hybrid orbitals
- The conclusions of Valence Bond Theory are:
 - 1. The hybridization of a bonding atom depends on the number of electron regions (bonding regions plus lone-pair regions)
 - Bonds can be made between pure and hybrid orbitals
 - Bonds can be classified as sigma or pi depending on the orientation of the orbitals' overlap (sigma – endon-end; pi– off axis / side-to-side)

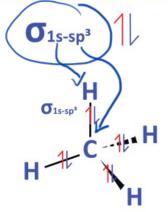


Valence Bond Summary

	# of Electron- Dense Regions	Hybridization	Advanced: the more your practice,	
Hybrids	2	sp	you will see that:	
	3	sp ²	 Sigma bonds are almost always overlapping hybrid orbitals (with 	
	4	sp ³	the exception of hydrogen's pure	
	5	sp ³ d	 2. Pi bonds are always overlapping valence p-orbitals. 	
	6	sp ³ d ²		
Types of Bonds	Single Bonds: 1 sigma bond		bond	

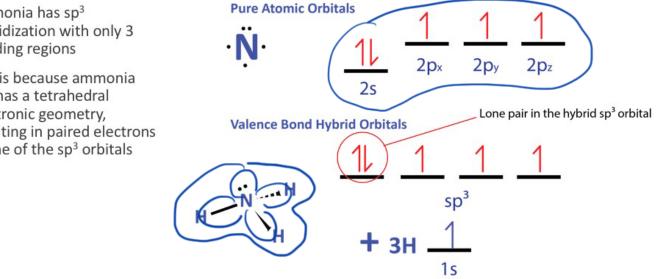
Valence Bond: sp³

• The sp³ hybridization is observed when a central atom has 4 electron-dense regions



Valence Bond: sp³

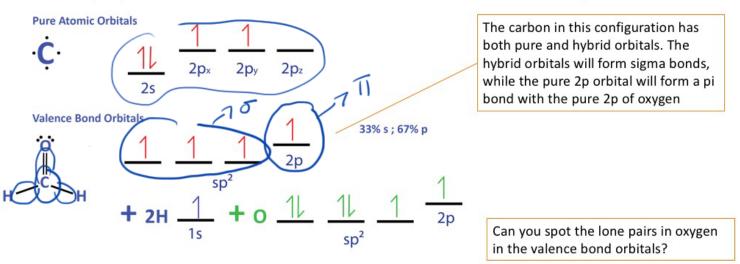
Methane forms 4 sigma bonds to fill Carbon's octet


What you form:

4 End-on-End overlaps (sigma bonds) between the pure 1s of H and the hybrid sp³ of C

Valence Bond: sp³ with 3 bonding regions

- Ammonia has sp³ hybridization with only 3 bonding regions
- This is because ammonia . still has a tetrahedral electronic geometry, resulting in paired electrons in one of the sp³ orbitals



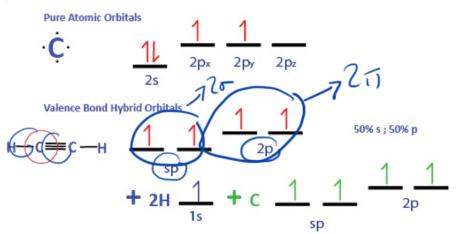
Valence Bond Example: Water

$$H \stackrel{io}{\rightarrow} H \left(\begin{array}{c} 1L & 1L & 1 \\ 5p^3 \end{array} \right)$$

Valence Bond: sp²

• The sp² hybridization is observed when a central atom has 3 electron-dense regions

Valence Bond: sp²

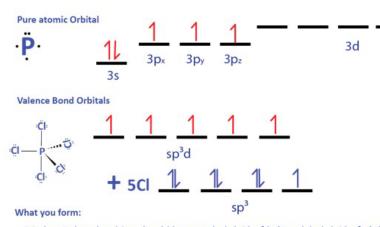

What you form:

End-on-End overlap (sigma bonds) between the pure 1s of H and the hybrid sp² of C End-on-End overlap (sigma bond) between the hybrid sp² of O and the hybrid sp² of C Side-by-Side overlap (pi bond) between the pure 2p of O and the pure 2p of C

σ_{1s-sp²} **π**_{2p-2p} Osp²-sp² σ15-5p²

Valence Bond: sp

The sp hybridization is observed when a central atom has 2 electron-dense regions

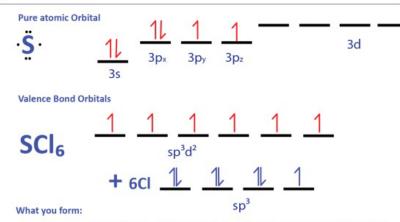


Valence Bond: sp

The sp hybridization is observed when a central atom has 2 electron-dense regions

Valence Bond: sp³d

- The sp³d hybridization is observed when a central atom has 5 electron-dense regions
- This can only occur with central atoms with 3p or greater electrons – the same rules apply for expanded valence Lewis Structures

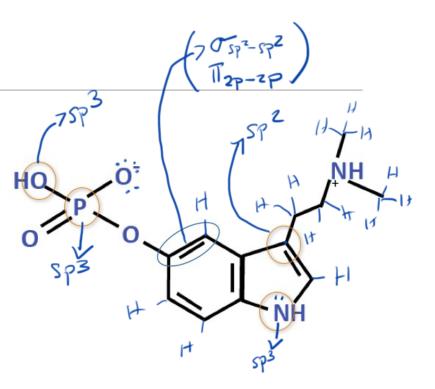


5 End-on-End overlaps (sigma bonds) between the hybrid sp³d of P and the hybrid sp³ of Cl

Valence Bond: sp³d²

- The sp³d² hybridization is observed when a central atom has 6 electron-dense regions
- This can only occur with central atoms with 3p or greater electrons – the same rules apply for expanded valence Lewis Structures

6 End-on-End overlaps (sigma bonds) between the hybrid sp³d² of S and the hybrid sp³ of Cl


σ_{sp³d²-sp³</sup>}

Organic Molecules

How many sigma and pi bonds are in this structure?

What is the hybridization of the central atoms circled in orange?

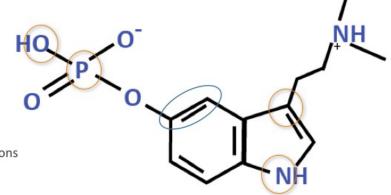
What orbitals are overlapping to form the bonds circled in blue?

Organic Molecules

What is the hybridization of the circled central atoms?

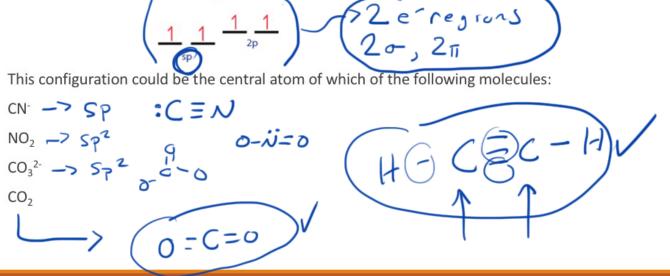
Oxygen - sp³

Nitrogen – sp³

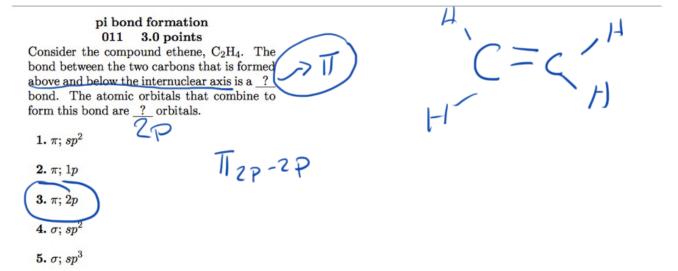

Carbon - sp²

Phosphorus - sp³

Overlapping double bond is:


Head on overlap of sp² of carbons

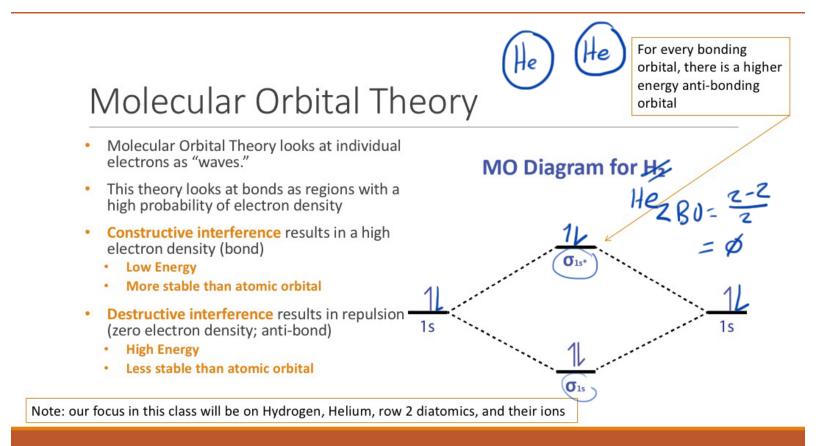
Side-by-side overlap of the pure 2p of the carbons



VB Challenge Question

Consider the VB electron configuration for the valence of a central atom.

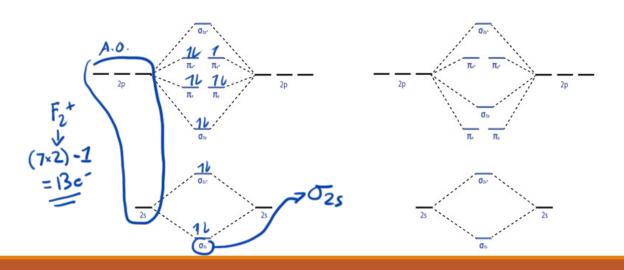
Valence Bond Question


Molecular Orbital Theory

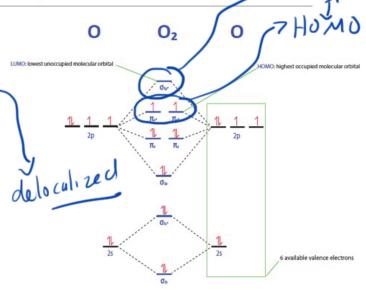
ATOMIC ORBITALS COMBINE TO FORM MOLECULAR ORBITALS

Molecular Orbital Theory

- Molecular Orbital Theory is a quantum mechanical approach to bonding
- This theory looks at bonds as regions with a high probability of electron density according to the Schrödinger Equation
- Constructive interference results
 in a high electron density (bond)
 - Low Energy
 - More stable than atomic orbital
- Destructive interference results in repulsion (zero electron density; anti-bond)
 - High Energy
 - Less stable than atomic orbital


pore

Molecular Orbital Theory

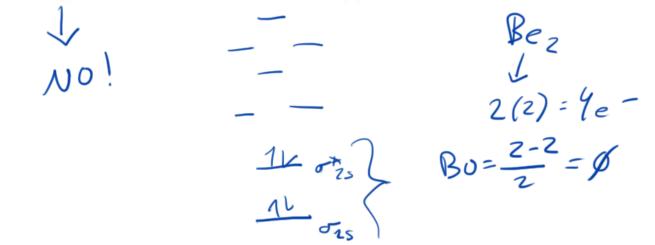

 O_2 and F_2

B₂, N₂, and C₂

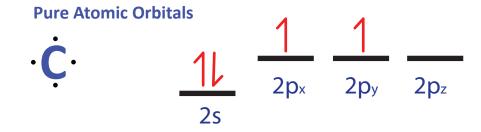
Molecular Orbital Theory: Conclusions

- Molecular Orbital Theory provides three conclusions that Valence Bond and VSEPR are unable to explain:
 - MO Theory can describe fractional bond orders ascribed to charged molecules and resonance structures using anti-bonding and bonding orbitals
 - 2. MO Theory can identify the magnetic properties of a given molecule (diamagnetic, paramagnetic)
 - 3. MO Theory can predict the photon emission energy of excited electrons (HOMO-LUMO)

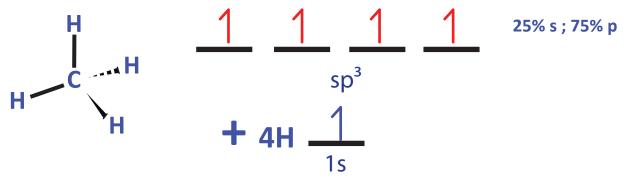
MO Theory Question


What is the molecular orbital electron configuration for O_2^{2-2} Does this molecule exist? What is the bond order? Are the electrons delocalized? Identify the HOMO-LUMO gap.

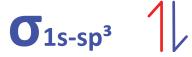
TTO OTO


(xZ)

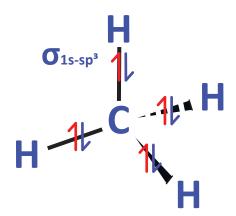
MO Theory Question


Does Be₂ exist? How does molecular orbital theory prove this?

Valence Bond Theory



Valence Bond Hybrid Orbitals

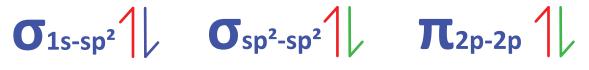


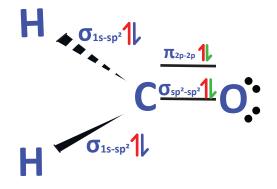
What you form:

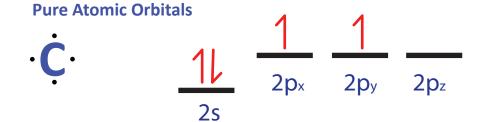
4 End-on-End overlaps (sigma bonds) between the pure 1s of H and the hybrid sp³ of C

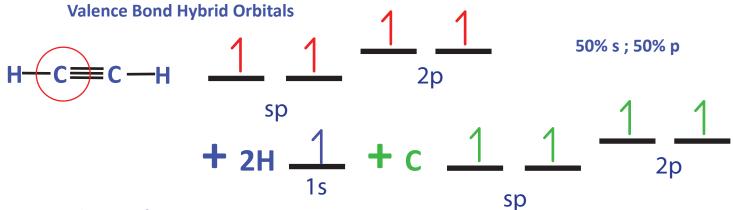
Your hybrid orbital shape (sp3,sp2,sp,etc.) absolutely depends on the molecule / surrounding atoms

Pure Atomic Orbitals


$$\cdot \dot{\mathbf{C}} \cdot \underbrace{\frac{1}{2s}}_{2s} = \frac{1}{2p_x} \frac{1}{2p_y} \frac{1}{2p_z}$$


Λ


Valence Bond Orbitals 33% s; 67% p 2p sp^2 Η Н **2H** 2p **1**s sp²

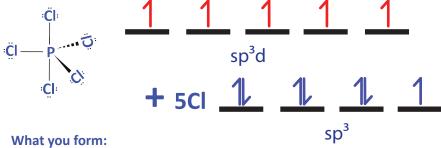

What you form:

End-on-End overlap (sigma bonds) between the pure 1s of H and the hybrid sp² of C End-on-End overlap (sigma bond) between the hybrid sp² of O and the hybrid sp² of C Side-by-Side overlap (pi bond) between the pure 2p of O and the pure 2p of C

What you form:

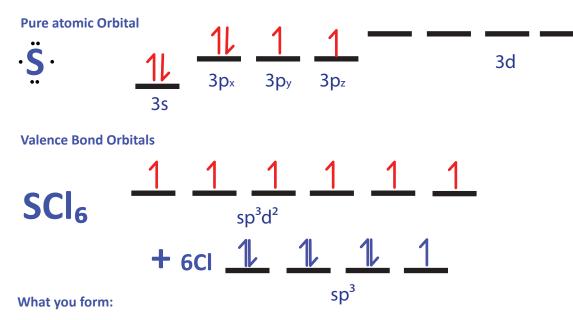
1 End-on-End overlap (sigma bond) between the pure 1s of H and the hybrid sp of C

- 1 End-on-End overlap (sigma bond) between the hybrid sp of C and the hybrid sp of C
- 2 Side-on-Side overlaps (pi bonds) between the pure 2p of C and the pure 2p of C


 σ_{1s-sp} σ_{sp-sp} π_{2p-2p}

$$H^{\sigma_{1s-sp}} C^{\sigma_{sp-sp}} C^{\sigma_{1s-sp}} H^{\sigma_{1s-sp}} H$$

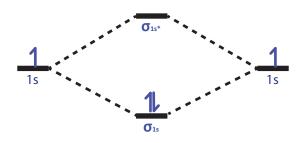
Pure atomic Orbital

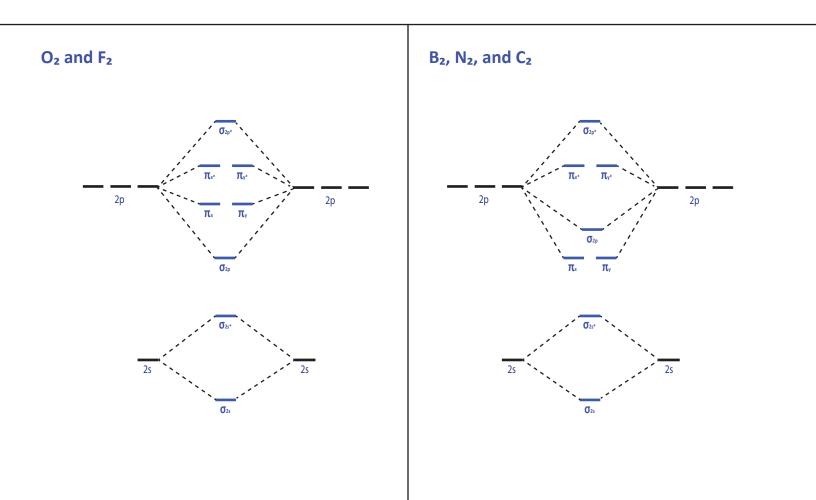

$$\cdot \mathbf{P} \cdot \underbrace{1}_{3s} \frac{1}{3p_x} \frac{1}{3p_y} \frac{1}{3p_z} 3d$$

Valence Bond Orbitals

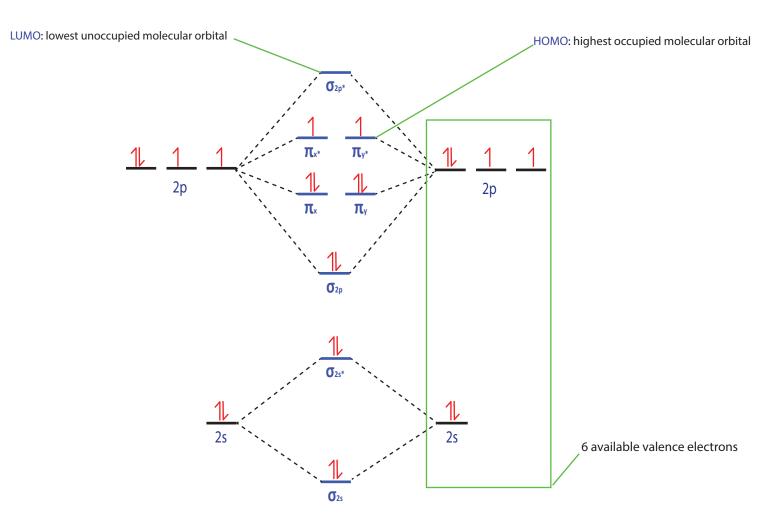
What you form:

5 End-on-End overlaps (sigma bonds) between the hybrid sp³d of P and the hybrid sp³ of Cl




6 End-on-End overlaps (sigma bonds) between the hybrid sp³d² of S and the hybrid sp³ of Cl

Osp³d²-sp³


Molecular Orbital Theory

MO Diagram for H₂

0 0₂ 0

Conclusions from this diagram:

Bond Order = $\frac{1}{2}$ (Bonding electrons - Anti-bonding electrons) Bond Order = $\frac{1}{2}$ (8 - 4) = 2

Oxygen is paramagnetic, meaning it contains unpaired electrons. Paramagnetic compounds are attracted to a magnetic field.