This print-out should have 50 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

### LDE Planck relation 001 001 10.0 points

What is the energy, in Joules, of a photon of wavelength 200 nm? What bond energy would this correspond to, in  $kJ \cdot mol^{-1}$ ?

**1.** 
$$1.32 \times 10^{-31}$$
 J;  $7.95 \times 10^{-11}$  kJ  $\cdot$  mol<sup>-1</sup>

**2.**  $9.94 \times 10^{-17}$  J;  $1.65 \times 10^{-43}$  kJ  $\cdot$  mol<sup>-1</sup>

**3.**  $1.32 \times 10^{-21}$  J; 795 kJ · mol<sup>-1</sup>

**4.**  $9.94 \times 10^{-19} \text{ J}; 599 \text{ kJ} \cdot \text{mol}^{-1}$ 

**5.**  $1.32 \times 10^{-40}$  J;  $7.95 \times 10^{-20}$  kJ  $\cdot$  mol<sup>-1</sup>

**6.**  $9.94 \times 10^{-21}$  J; 5.99 kJ · mol<sup>-1</sup>

## LDE Balmer Series 001 002 10.0 points

Which of the following electronic transitions for a hydrogen atom would correspond to the highest energy emission found in the Balmer series?

- **2.** n=2 to n=4
- **3.** n=3 to n=1
- **4.** n=3 to n=2
- **5.** n=1 to n=2

**6.** n=4 to n=2

#### LDE Classical Failure 002 003 10.0 points

Which of the following statement(s) is/are true?

I) The failure of classical mechanics to predict the absorptions/emission spectra of gases is called the ultraviolet catastrophe.

- II) Quantum mechanics accurately predicted the behavior of blackbody radiators.
- III) The emission spectra of gases are discrete rather than continuous.
- IV) Any frequency of light will eject an electron from a metal surface as long as the intensity is sufficient.

 $\mathbf{1.} \text{ II and III}$ 

- 2. I and III
- 3. I, II and IV
- 4. III and IV
- 5. II, III, and IV

#### LDE Uncertainty Principle Theory 001 004 10.0 points

Which of the following are true consequences of the uncertainty principle?

I) The uncertainty in an electron's momen- $\hbar$ 

tum can never be less than  $\frac{\hbar}{2}$ ;

- II) An electron can be measured in two places at once;
- III) Electrons and other particles do not have a well-defined position or momentum like particles in classical mechanics do.
- 1. II only
- **2.** I only
- **3.** I and II
- 4. II and III
- 5. I and III
- 6. III only

#### De Broglie Wavelength 01 005 10.0 points

Consider a flea of mass  $4.5 \times 10^{-4}$  g moving

at 1.0 m/s midway through its jump. What is its de Broglie wavelength?

**1.**  $2.9818 \times 10^{-40}$  m

**2.**  $1.4725 \times 10^{-30}$  m

**3.**  $1.47244 \times 10^{-27}$  m

**4.**  $2.9818 \times 10^{-37}$  m

#### Msci 01 0303 006 10.0 points

Which of the following is an intensive property?

1. density

 $\mathbf{2.}$  mass

3. weight

4. volume

5. number of moles of molecules

## LDE quantum rules 002 007 10.0 points

Which of the following sets of quantum numbers are **invalid**, i.e. violate one or more boundary conditions?

| I) $n = 3, \ell = 2, m_{\ell} = -2, m_s = +\frac{1}{2}$   |
|-----------------------------------------------------------|
| II) $n = 9, \ell = 5, m_{\ell} = 6, m_s = +\frac{1}{2}^2$ |
| III) $n = 2, \ell = 1, m_{\ell} = 0, m_s = +1$            |
| IV) $n = 2, \ell = 0, m_{\ell} = 0, m_s = +\frac{1}{2}$   |
| V) $n = 1, \ell = 0, m_{\ell} = 0, m_s = -\frac{1}{2}$    |
| <b>1.</b> II, III                                         |
| <b>2.</b> I, III, IV                                      |
| <b>3.</b> I, II, IV                                       |
| 4. II only                                                |
| 5. I only                                                 |

6. III only

7. IV only

8. I, IV

Msci 05 1648 008 10.0 points

Hund's rule states that

**1.** electrons occupy all the orbitals of a given sublevel singly before pairing begins.

**2.** no two electrons in an atom may have identical sets of four quantum numbers.

**3.** it is impossible to determine accurately both the momentum and position of an electron simultaneously.

# Mlib 02 4077 009 10.0 points

Write the electron configuration for P.

**1.**  $1s^{2} 2s^{2} 2p^{6} 3d^{5}$  **2.**  $1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6}$  **3.**  $1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{3}$ **4.**  $1s^{2} 2s^{2} 2p^{6} 3p^{5}$ 

### LDE periodic trend theory 001 010 10.0 points

Which of the following BEST describes the purpose of effective nuclear charge?

**1.** It exists only to torture foolish CH 301 students who did not study.

**2.** It is a method to evaluate how much attraction a given electron "feels" from the nucleus so that periodic trends can be predicted and rationalized.

**3.** It is used to rationalize chemical bonding in covalently bonded molecules.

**4.** It is a measure of the effect of filled and half-filled subshells on the stability of atoms and ions.

**5.** It is a measure of how many protons a given atom has which is useful because of variations from isotope to isotope.

**6.** It is used to determine the number of valence electrons of a given species.

## LDE Ranking trends 002 011 10.0 points

Rank the following species in terms of increasing electron affinity: Sulfur (S), Rubidium (Rb), Germanium (Ge), Krypton (Kr), Floruine (F)

- 1. Not enough information
- **2.** Kr < Ge < Rb < S < F
- **3.** Ge < Rb < S < F < Kr
- $4. \mathrm{F} < \mathrm{Ge} < \mathrm{S} < \mathrm{Rb} < \mathrm{Kr}$
- **5.** Rb < Ge < S < F < Kr
- **6.** Kr < Rb < Ge < S < F

#### ChemPrin3e T02 07 012 10.0 points

Which of the following has the highest lattice energy?

1. NaCl

**2.** CaO

**3.** KI

**4.** BaO

**5.** MgO

## Line Drawing to Formula 013 10.0 points

Determine the molecular formula for the

molecule:



**1.**  $C_6H_6Cl_2$ 

**2.**  $C_6H_6$ 

**3.**  $C_4H_{12}Cl_2$ 

 $4. C_4 H_4 Cl_2$ 

5.  $C_6H_4Cl_2$ 

**6.**  $C_6H_4Cl$ 

#### LDE Lewis Structures 005 014 10.0 points

Which of the following is the correct Lewis structure of hydroxylamine (NH<sub>2</sub>OH)?

$$\begin{array}{c}
 H \\
 I. : N = \dot{O} \\
 H = \dot{O} \\
 H = \dot{O} \\
 H = \dot{O} \\
 H = \ddot{O} \\
 H = \ddot{O} \\
 H = \ddot{O} \\
 H = \dot{O} \\$$



formula for hydrogen cyanide (HCN)?

| 1.  | H - C - N                                    |
|-----|----------------------------------------------|
| 2.  | H - C - N                                    |
| 3.  | $ {H}_{-C \equiv N} : $                      |
| 4.  | : H-C-N:                                     |
| 5.  | $: \underset{\cdots}{\operatorname{H-C-N}}:$ |
| 6.  | H-C-N:                                       |
| 7.  | H - C - N                                    |
| 8.  | : H - C = N                                  |
| 9.  | H=C=N                                        |
| 10. | $H-C\equiv N$ :                              |

#### Mlib 03 1025 016 10.0 points

How many resonance structures are there for the  $NO_3^-$  polyatomic ion?

**1.** 5

**2.** 1

**3.** 2

4. This molecule does not exhibit resonance.

**5.** 3

**6.** 4

### ChemPrin3e 02 76 017 10.0 points

Which of the three Lewis structures is the most important for the fulminate ion  $(CNO^{-})$ ?

| I)      | -1<br>$\ddot{C} \equiv$ | +1<br>≡ N -          | -1<br>$- \overset{\cdot}{\text{O}}$ : |
|---------|-------------------------|----------------------|---------------------------------------|
| II)     | −2<br>Ċ =               | +1<br>$\equiv$ N $=$ | $\stackrel{0}{=} \overset{0}{\odot}$  |
| <b></b> | -3                      | +1                   | +                                     |

- 1. I and II only
- 2. II only

**3.** All of these are important.

- 4. I only
- 5. None of these is important.
- 6. I and III only

7. II and III only

8. III only

#### Brodbelt 08 04 018 10.0 points

 $ICl_3$  is  $sp^3d$  hybridized. What is the electronic and molecular geometry?

- 1. trigonal bipyramidal; T-shaped
- **2.** tetrahedral; pyramidal
- 3. octahedral; T-shaped
- 4. trigonal bipyramidal, seesaw
- 5. trigonal planar; trigonal planar

## LDE VSEPR Molecular Geometry 002 019 10.0 points

Which of the following molecules is/are polar?



## LDE VB Sigma Pi Bonds 004 020 10.0 points

How many sigma ( $\sigma$ ) and pi ( $\pi$ ) bonds are in the Lewis structure for C(COOH)<sub>4</sub>?

- **1.** 12  $\sigma$ , 0  $\pi$
- **2.** 12  $\sigma$ , 4  $\pi$
- **3.** 8  $\sigma$ , 4  $\pi$
- **4.** 16  $\sigma$ , 0  $\pi$
- **5.** 16  $\sigma$ , 4  $\pi$

## Brodbelt 8200504 021 10.0 points

Give the hybridization of each central atom: nitrogen, middle carbon, right carbon.

H  
H-
$$\ddot{N} = C - C - H$$
  
HO H  
1.  $sp^2$ ,  $sp^2$ ,  $sp^3$   
2.  $sp$ ,  $sp$ ,  $sp$   
3.  $sp^2$ ,  $sp^3$ ,  $sp^3$   
4.  $sp^2$ ,  $sp^2$ ,  $sp^2$   
5.  $sp^2$ ,  $sp$ ,  $sp^2$   
6.  $sp$ ,  $sp^3$ ,  $sp^3$   
7.  $sp^3$ ,  $sp^2$ ,  $sp^3$   
8.  $sp^3$ ,  $sp^3$ ,  $sp^3$ 

# LDE VB Hybridization 002 022 10.0 points

Consider the thionoester molecule



What orbitals were used to form the  $\pi$  (pi) bond?

sp<sup>3</sup>, 3s
 2s, 3p
 sp<sup>3</sup>, 3p
 2p, 3p
 sp<sup>2</sup>, 3s

### LDE Bond Order 009

| -                                                                                                                   |                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| <b>023 10.0 points</b><br>All of the species below have the same bond<br>order except for one of them. Which is it? | Msci 12 0918a<br>026 10.0 points<br>What volume will 40.0 L of He at 50.00°C and<br>1201 torr occupy at STP?                   |
| 1. $Ne_2^+$                                                                                                         |                                                                                                                                |
| <b>э</b> u+                                                                                                         | <b>1.</b> 31.1 L                                                                                                               |
| <b>2.</b> <sup>11</sup> <sub>2</sub>                                                                                | <b>2.</b> 53.4 L                                                                                                               |
| <b>3.</b> $F_2^-$                                                                                                   | <b>a</b> 10 0 <b>f</b>                                                                                                         |
| 4. $H_{2}^{-}$                                                                                                      | <b>3.</b> 12.8 L                                                                                                               |
| 2                                                                                                                   | <b>4.</b> 18.6 L                                                                                                               |
| <b>5.</b> $B_2^-$                                                                                                   | 5. 26 7 L                                                                                                                      |
| LDE Paramagnetism 004                                                                                               |                                                                                                                                |
| 024 10.0 points                                                                                                     | Mass Density and Pressure                                                                                                      |
| agnetic?                                                                                                            | A sample of nitrous oxide gas (NO) has a                                                                                       |
| I) Li <sub>2</sub>                                                                                                  | density of 12 g $L^{-1}$ . What pressure does the                                                                              |
| II) $O_2$                                                                                                           | sample exert at 27 $^{\circ}$ C?                                                                                               |
| III) $H_2^+$                                                                                                        |                                                                                                                                |
| 1 11                                                                                                                | <b>1.</b> 61.6 atm                                                                                                             |
| 1. 11 and 111                                                                                                       | 2 not enough information                                                                                                       |
| 2. I and II                                                                                                         | 2. not chough information                                                                                                      |
|                                                                                                                     | <b>3.</b> 9.9 atm                                                                                                              |
| <b>3.</b> I only                                                                                                    |                                                                                                                                |
|                                                                                                                     | <b>4.</b> 1.0 atm                                                                                                              |
| <b>4.</b> II only                                                                                                   | 5,007.0 atm                                                                                                                    |
| 5. I. II and III                                                                                                    | <b>5.</b> 997.9 atm                                                                                                            |
|                                                                                                                     | Brodbelt 12 04a                                                                                                                |
| 6. III only                                                                                                         | <b>028 10.0</b> points                                                                                                         |
|                                                                                                                     | For the reaction                                                                                                               |
| 7. I and III                                                                                                        | $2 \operatorname{HCl} + \operatorname{Na_2CO_3} \rightarrow 2 \operatorname{NaCl} + \operatorname{H_2O} + \operatorname{CO_2}$ |
| Magi 12 0011                                                                                                        | 179.2 liters of $CO_2$ is collected at STP. How                                                                                |
| $025 	10.0 	ext{ points}$                                                                                           | many moles of NaCl are also formed?                                                                                            |
| 2.0 g of $H_2$ and 8.0 g of He are put in a 22.4 liter container at 0°C. The total pressure is                      | <b>1.</b> 4.0 moles                                                                                                            |
| <b>1.</b> 5.0 atm.                                                                                                  | <b>2.</b> 16.0 moles                                                                                                           |
| <b>2.</b> 3.0 atm.                                                                                                  | <b>3.</b> 8.0 moles                                                                                                            |
| <b>3.</b> 10.0 atm.                                                                                                 | <b>4.</b> 32.0 moles                                                                                                           |

**5.** 6.0 moles

**4.** 1.0 atm.

**6.** 12.5 moles

#### rms velocity of He 01 029 10.0 points

Helium has a rms velocity  $(v_{\rm rms})$  that is 4.21 times faster than which of the following gases?

**1.** chlorine,  $Cl_2$ 

**2.** oxygen,  $O_2$ 

3. neon, Ne

4. argon, Ar

5. xenon, Xe

## LDE Gas Non-ideality 002 030 10.0 points

Which of the following does **not** affect the ideality of gases?

- I) the temperature of the gas
- II) the density of the gas

III) the size of the gas molecules

**1.** none of the above

**2.** I only

**3.** II and III

4. III only

5. I and II

6. I, II, and III

7. II only

8. I and III

#### LDE Intermolecular Forces 001 031 10.0 points

Which of the following statements regarding intermolecular forces (IMF) is/are true?

- I) Intermolecular forces result from attractive forces between regions of positive and negative charge density in neighboring molecules.
- II) The stronger the bonds within a molecule

are, the stronger the intermolecular forces will be.

III) Only non-polar molecules have instantaneous dipoles.

1. I and II

2. III only

3. II only

4. I only

5. I, II, and III

6. II and III

7. I and III

### LDE Intermolecular Forces 002 032 10.0 points

Which of the following is not correctly paired with its dominant type of intermolecular forces?

- **1.**  $C_6H_6$  (benzene), instantaneous dipoles
- 2. SiH<sub>4</sub>, instantaneous dipoles
- **3.** CaO, ionic forces
- 4. NH<sub>3</sub>, hydrogen bonding
- 5. HBr, hydrogen bonding

## Explaining Dispersion Forces 033 10.0 points

Carbon tetrachloride (CCl<sub>4</sub>) and *n*-octane (C<sub>8</sub>H<sub>18</sub>) are both non-polar molecules. At standard pressure, they boil at 345 K and 399 K, respectively. Which answer choice below correctly explains their boiling points?

$$Cl \qquad \downarrow \\ Cl - Cl - Cl \\ \downarrow \\ Cl \\ Cl \\ \end{bmatrix}$$

 $\sim \sim \sim$ 

1.  $C_8H_{18}$  has a higher boiling point because its electron cloud is larger and allows it to form more instantaneous dipoles.

**2.** CCl<sub>4</sub> has a lower boiling point because its smaller surface area allows it to form stronger instantaneous dipoles.

**3.**  $C_8H_{18}$  has a higher boiling point because its greater molecular weight enables it to form stronger instantaneous dipoles.

4.  $C_8H_{18}$  has a higher boiling point because its smaller surface area allows it to form stronger instantaneous dipoles.

5.  $CCl_4$  has a lower boiling point because its greater molecular weight enables it to form stronger instantaneous dipoles.

## LDE Physical Properties 001 034 10.0 points

Which of the following statements about boiling is false?

**1.** Boiling occurs when vapor pressure exceeds atmospheric pressure.

2. For a given pressure, the boiling point is always at a higher temperature than melting point.

**3.** The boiling point of a liquid is independent of atmospheric pressure.

**4.** As intermolecular forces increase, boiling point increases as well.

## VP IMF Ranking 035 10.0 points

Rank the compounds

CH<sub>3</sub>CH<sub>2</sub>OH CH<sub>3</sub>NH<sub>2</sub> CH<sub>3</sub>OH NaOH in terms of increasing vapor pressure.

$$\label{eq:hardenergy} \begin{split} \textbf{1.} \ \mathrm{NaOH} &< \mathrm{CH}_3\mathrm{NH}_2 < \mathrm{CH}_3\mathrm{OH} \\ &< \mathrm{CH}_3\mathrm{CH}_2\mathrm{OH} \end{split}$$

 $\label{eq:ch3OH} \begin{array}{l} \mbox{2. NaOH} < \mbox{CH}_3\mbox{OH} < \mbox{CH}_3\mbox{NH}_2 \\ < \mbox{CH}_3\mbox{CH}_2\mbox{OH} \end{array}$ 

 $\label{eq:starses} \begin{array}{l} \textbf{3.} \ \mathrm{NaOH} < \mathrm{CH}_3\mathrm{CH}_2\mathrm{OH} < \mathrm{CH}_3\mathrm{OH} \\ < \mathrm{CH}_3\mathrm{NH}_2 \end{array}$ 

$$\label{eq:charge} \begin{array}{l} \mbox{5. CH}_3 \mbox{NH}_2 < \mbox{CH}_3 \mbox{OH} < \mbox{CH}_3 \mbox{CH}_2 \mbox{OH} \\ < \mbox{NaOH} \end{array}$$

#### LaBrake CIC CH5 02 036 10.0 points

Which of the following substances would you predict might evaporate the fastest?

 $\textbf{1.} C_8 H_{18}$ 

**2.**  $C_6H_{14}$ 

**3.**  $C_{10}H_{22}$ 

 $\textbf{4.} C_{12}H_{24}$ 

## LDE Thermodynamic Theory 012 U not E 037 10.0 points

Which of the following statements concerning the laws of thermodynamics is not true?

**1.** Entropy always increases in an isolated system.

**2.** S = 0 for a perfect crystal at absolute zero.

**3.**  $\Delta S_{univ} > 0$ 

**4.** Free energy is conserved in a closed system.

**5.**  $\Delta U_{univ} = 0$ 

## LDE Thermodynamic Work 0034 038 10.0 points

For which of the following reactions at room temperature  $(25^{\circ}C)$  would there be 5.0 kJ of work done on the system?

**1.** 
$$2 \operatorname{H}_2O_2(\ell) \to 2 \operatorname{H}_2O(\ell) + O_2(g)$$

**2.** 
$$2 \operatorname{H}_2 O(\ell) + O_2(g) \rightarrow 2 \operatorname{H}_2 O_2(\ell)$$

**3.** 
$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$$

$$\begin{array}{l} \textbf{4.} \operatorname{N_2H_2(g)} + \operatorname{CH_3OH(g)} \rightarrow \\ \operatorname{CH_2O(g)} + \operatorname{N_2(g)} + 2\operatorname{H_2(g)} \end{array}$$

5. 
$$CH_2O(g) + N_2(g) + 2H_2(g) \rightarrow N_2H_2(g) + CH_3OH(g)$$

6. 
$$\operatorname{CO}_2(g) + 2\operatorname{H}_2O(g) \to \operatorname{CH}_4(g) + 2\operatorname{O}_2(g)$$

### LDE Bomb Calorimeter 002 039 10.0 points

If we set up a bomb calorimetry experiment to determine the molar internal energy of combustion of ethene (C<sub>2</sub>H<sub>4</sub>) using 1 L of water as our heat sink, 2.805 g of ethene, and measure an initial and final temperature of 25.20°C and 58.92°C, respectively, what will be the experimentally determined molar internal energy of combustion of ethene? Assume the density of water is 1.00 g  $\cdot$  mL<sup>-1</sup> and the calorimeter itself absorbs no heat. The specific heat capacity of water is 4.184  $J \cdot g^{-1} \cdot K^{-1}$ .

- **1.**  $-14.11 \text{ kJ} \cdot \text{mol}^{-1}$
- **2.**  $-141, 100 \text{ kJ} \cdot \text{mol}^{-1}$
- **3.**  $-14, 110 \text{ kJ} \cdot \text{mol}^{-1}$
- **4.**  $-141.1 \text{ kJ} \cdot \text{mol}^{-1}$
- **5.**  $-1, 411 \text{ kJ} \cdot \text{mol}^{-1}$

**1.**  $-710 \text{ kJ} \cdot \text{mol}^{-1}$ 

### LDE Bond Enthalpy 002 040 10.0 points

Using the provided bond enthalpy data, calculate the change in enthalpy for the following reaction:

$$CH_4(g) + O_2(g) \longleftrightarrow CH_2O(g) + H_2O(g)$$

- 2. 710 kJ · mol<sup>-1</sup>
   3. −577 kJ · mol<sup>-1</sup>
   4. 577 kJ · mol<sup>-1</sup>
   5. −349 kJ · mol<sup>-1</sup>
- **6.**  $349 \text{ kJ} \cdot \text{mol}^{-1}$

## ChemPrin3e T06 48 041 10.0 points

Calculate the standard enthalpy of combustion of butane  $(C_4H_{10}(g))$  at 298 K from standard enthalpy of formation data.

- **1.**  $-895.49 \text{ kJ} \cdot \text{mol}^{-1}$
- **2.**  $-2342.32 \text{ kJ} \cdot \text{mol}^{-1}$
- **3.**  $-2877.04 \text{ kJ} \cdot \text{mol}^{-1}$
- **4.**  $-2843.5 \text{ kJ} \cdot \text{mol}^{-1}$
- **5.**  $-2056.49 \text{ kJ} \cdot \text{mol}^{-1}$

#### LDE Thermodynamic Signs 001 042 10.0 points

When wood is burning (i.e. a combustion process is occurring), which of the following quantities is positive?

- **1.** Work.
- **2.** Change in enthalpy.
- **3.** Change in entropy.
- 4. Change in Gibbs' free energy.

## ChemPrin3e 07 25 26 043 10.0 points

Which one shows the substances in the decreasing order of their molar entropy?

**1.**  $CO_2(g)$ ,  $H_2O(\ell)$ , Ne(g), Ar(g)

**2.** 
$$H_2O(\ell)$$
,  $Ne(g)$ ,  $Ar(g)$ ,  $CO_2(g)$ 

- **3.** None of these
- 4.  $CO_2(g)$ , Ar(g), Ne(g),  $H_2O(\ell)$
- **5.**  $H_2O(\ell)$ , Ar(g), Ne(g),  $CO_2(g)$
- **6.**  $H_2O(\ell)$ ,  $CO_2(g)$ , Ne(g), Ar(g)

## LDE Entropy 002 044 10.0 points

Which of the reactions below will likely have the largest increase in entropy  $(\Delta S_{\rm rxn})$ ?

- **1.**  $N_2H_4(g) + H_2(g) \rightarrow 2 NH_3(g)$
- **2.**  $2 \operatorname{CH}_4(g) + 2O_3(g) \rightarrow 4 \operatorname{H}_2O(g) + 2 \operatorname{CO}(g)$
- **3.**  $C_5H_{12}(\ell) + 8O_2(g) \rightarrow 6H_2O(g) + 5CO_2(g)$

**4.** 
$$S_3(g) + 9 F_2(g) \rightarrow 3 SF_6(g)$$

5. 
$$Na^+(g) + Cl^-(g) \rightarrow NaCl(s)$$

#### entropy change for metal heating 1 045 10.0 points

150 grams of iron is heated from  $25^{\circ}$ C to  $150^{\circ}$ C. What is  $\Delta S$  for this change? The specific heat capacity of iron is 0.450 J/g K.

- **1.** -121 J/K
- **2.** –23.6 J/K
- **3.** +23.6 J/K
- **4.** −8438 J/K
- 5. + 121 J/K
- 6. +8438 J/K
- **7.** 0 J/K

### 046 10.0 points Calculate $\Delta S_{\text{surr}}^{\circ}$ at 298 K for the reaction

 $6 \operatorname{C(s)} + 3 \operatorname{H}_2(g) \rightarrow \operatorname{C}_6 \operatorname{H}_6(\ell)$ 

 $\Delta H_{\rm r}^{\circ} = +49.0 \text{ kJ} \cdot \text{mol}^{-1} \text{ and } \Delta S_{\rm r}^{\circ} = -253 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}.$ 

- $1. 417 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$
- **2.**  $+253 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$
- $\mathbf{3.} + 164 \, \mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{mol}^{-1}$
- $4. 253 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$
- $5. 164 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

## LDE Temperature and Phase Changes 003 047 10.0 points

Based on the enthalpy of sublimation  $(\Delta H_{sub} = 393.5 \text{ kJ} \cdot \text{mol}^{-1})$  and entropy of sublimation  $(\Delta S_{sub} = 2.023 \text{ kJ} \cdot \text{mol}^{-1} \cdot \text{K}^{-1})$  of carbon dioxide, at what temperature does this phase transition occur?

0.2 K
 -78.5 °C
 78.5 °C
 -78.5 K

**5.** 0.2 °C

## ChemPrin3e T07 59 048 10.0 points

For the reaction

 $2 \operatorname{C(s)} + 2 \operatorname{H}_2(g) \rightarrow \operatorname{C}_2\operatorname{H}_4(g)$  $\Delta H_r^\circ = +52.3 \text{ kJ} \cdot \text{mol}^{-1} \text{ and } \Delta S_r^\circ = -53.07 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \text{ at } 298 \text{ K}.$  The reverse reaction will be spontaneous at

1. temperatures above 985 K.

**2.** temperatures below 1015 K.

**3.** no temperatures.

**4.**  $NO_2(g)$ 

**4.** temperatures below 985 K. **3.** HI(g)

5. all temperatures.

## ChemPrin3e T07 52 049 10.0 points

Calculate  $\Delta G_{\mathbf{r}}^{\circ}$  for the decomposition of mercury(II) oxide

$$\begin{array}{ccc} 2\,{\rm HgO(s)} \to 2\,{\rm Hg}(\ell) + {\rm O}_2({\rm g}) \\ \Delta H_{\rm f}^\circ & -90.83 & - & - \\ ({\rm kJ}\cdot{\rm mol}^{-1}) \\ \Delta S_{\rm m}^\circ & 70.29 & 76.02 & 205.14 \\ ({\rm J}\cdot{\rm K}^{-1}\cdot{\rm mol}^{-1}) \end{array}$$

at 298 K.

- 1.  $-246.2 \text{ kJ} \cdot \text{mol}^{-1}$
- $\mathbf{2.+}117.1 \; \mathrm{kJ} \cdot \mathrm{mol}^{-1}$
- **3.**  $-117.1 \text{ kJ} \cdot \text{mol}^{-1}$

**4.** 
$$+246.2 \text{ kJ} \cdot \text{mol}^{-1}$$

5.  $-64.5 \text{ kJ} \cdot \text{mol}^{-1}$ 

# LDE Gibbs Stability Ranking 002 050 10.0 points

Use the table data

|                                                                                                          | $\Delta G^{\circ}_{ m rxn}$ |
|----------------------------------------------------------------------------------------------------------|-----------------------------|
|                                                                                                          | $[\rm kg/(\rm mol\cdot K)]$ |
| $\operatorname{AgCl}(s) \to \operatorname{Ag}(s) + \frac{1}{2}\operatorname{Cl}_2(g)$                    | 109.7                       |
| $2 \operatorname{Ag}(s) + \frac{1}{2} \operatorname{O}_2(g) \to \operatorname{Ag}_2 \operatorname{O}(s)$ | -10.8                       |
| $\frac{1}{2}N_2(g) + O_2(g) \rightarrow NO_2(g)$                                                         | 51.8                        |
| ${ m HI}({ m g}) 	o {1\over 2}{ m H}_2({ m g}) + {1\over 2}{ m I}_2({ m g})$                             | -1.3                        |

to pick the thermodynamically most stable species.

1. 
$$Ag_2O(s)$$

**2.** 
$$AgCl(s)$$