This print-out should have 25 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering.

Important Message: Please please please remember to CORRECTLY bubble in your name, uteid, and version number for your exam. We are averaging about 20 students who fail to do this. Think of it as the easiest question on the exam. If you get it wrong, you'll get a zero when we grade it. Because Quest is not that user friendly, it will take at least 24 hours to get your avoidable mistake fixed. It is a huge pain in the ass know that. Please take the time to bubble in your information carefully. Lets have NO mistakes on this information please. Thank you so much. I'm only putting this plea on this practice exam and not on the real exam. So just remember to do it.

- Dr. McCord


## Holt da 63 rev 2b <br> $001 \quad 10.0$ points

Use electron-dot notation to demonstrate the formation of ionic compounds involving the elements Ca and I.

## 1. None of these

2. $\ddot{\mathrm{Ca}} \cdot \ddot{\mathrm{Ca}}+\cdot \ddot{\mathrm{I}}:+\cdot \ddot{\mathrm{I}}:+\cdot \ddot{\mathrm{I}}: \longrightarrow$ $\mathrm{Ca}^{3+}+\mathrm{Ca}^{3+}+: \stackrel{. .}{\mathrm{I}}:^{2-}+: \stackrel{. .}{\mathrm{I}}:^{2-}+: \stackrel{. .}{\mathrm{I}}:^{2-} \underset{\mathrm{Ca}_{2} \mathrm{I}_{3}}{\longrightarrow}$
3. $\quad \ddot{\mathrm{Ca}} \cdot+\stackrel{\ddot{\mathrm{I}}}{ } \longrightarrow$

$$
\mathrm{Ca}^{3+}+: \stackrel{. .}{\mathrm{I}}:{ }^{3-} \longrightarrow \mathrm{CaI}
$$

4. $\mathrm{Ca}:+\cdot \stackrel{\ddot{\mathrm{I}}}{. .}:+\cdot \stackrel{.}{\mathrm{I}}: \longrightarrow$
$\mathrm{Ca}^{2+}+: \stackrel{. \ddot{\mathrm{I}}}{\mathrm{I}} \mathrm{:}^{-}+: \stackrel{.}{\mathrm{I}}:-\quad \mathrm{CaI}_{2}$ correct
5. $\mathrm{Ca} \cdot+\mathrm{Ca} \cdot+\cdot \stackrel{\ddot{\mathrm{I}}}{\cdot}: \longrightarrow$

$$
\mathrm{Ca}^{+}+\mathrm{Ca}^{+}+: \stackrel{. .}{\stackrel{\mathrm{I}}{ }}{ }^{2-} \longrightarrow \mathrm{Ca}_{2} \mathrm{I}
$$

6. $\quad \ddot{\mathrm{Ca}} \cdot+\cdot \stackrel{\ddot{\mathrm{I}}}{. .}:+\cdot \stackrel{. \ddot{\mathrm{I}}}{. .}+\cdot \stackrel{. .}{\mathrm{I}}: \longrightarrow$

$$
\mathrm{Ca}^{3+}+: \ddot{\mathrm{I}}:^{-}+: \ddot{\mathrm{I}}:^{-}+: \ddot{\mathrm{I}}:_{\mathrm{Ca}_{2} \mathrm{I}_{3}}^{\longrightarrow}
$$

7. $\mathrm{Ca} \cdot+\cdot \stackrel{. \ddot{\mathrm{I}}: \longrightarrow}{. .}$

$$
\mathrm{Ca}^{+}+: \stackrel{. .}{\mathrm{I}}: \quad \longrightarrow \mathrm{CaI}
$$

8. $\mathrm{Ca}:+\cdot \ddot{\mathrm{I}}: \longrightarrow$

$$
\mathrm{Ca}^{2+}+: \stackrel{. .}{\mathrm{I}}:{ }^{2-} \longrightarrow \mathrm{CaI}
$$

9. $\mathrm{Ca}:+\mathrm{Ca}:+\mathrm{Ca}:+\cdot \ddot{\mathrm{I}} \cdot+\cdot \ddot{\mathrm{I}} \cdot \longrightarrow$ $\mathrm{Ca}^{2+}+\mathrm{Ca}^{2+}+\mathrm{Ca}^{2+}+: \stackrel{.}{\mathrm{I}}:^{3-}+: \stackrel{. .}{\mathrm{I}}:^{3-} \longrightarrow$ $\mathrm{Ca}_{3} \mathrm{I}_{2}$
10. $\mathrm{Ca}^{\cdot}+\mathrm{Ca}^{\cdot}+\mathrm{Ca} \cdot+\cdot \stackrel{\ddot{\mathrm{I}} \cdot \longrightarrow}{\longrightarrow}$

$$
\mathrm{Ca}^{+}+\mathrm{Ca}^{+}+\mathrm{Ca}^{+}+: \stackrel{. .}{\mathrm{I}}:{ }^{3-} \longrightarrow \mathrm{Ca}_{3} \mathrm{I}
$$

## Explanation:

Ca : gives up two electrons to form the $\mathrm{Ca}^{2+}$ cation, and $\cdot \ddot{\mathrm{I}}$ : acquires an electron to form the : I. : anion.

Two iodine anions combine with one calcium cation to form an electrically neutral compound:

$$
\begin{aligned}
& \mathrm{Ca}:+\cdot \ddot{\mathrm{I}}:+\cdot \ddot{\mathrm{I}}: \longrightarrow \\
& \mathrm{Ca}^{2+}+: \stackrel{. .}{\mathrm{I}}:^{-}+: \stackrel{. .}{\mathrm{I}}:^{-} \longrightarrow \mathrm{CaI}_{2} \\
& \text { Mlib } 012023 \\
& 002 \quad 10.0 \text { points } \\
& \text { Choose the pair of names and formulas that }
\end{aligned}
$$

do NOT match.

1. $\mathrm{As}_{4} \mathrm{O}_{6}$ : tetraarsenic oxide correct
2. $\mathrm{SO}_{3}$ : sulfur trioxide
3. NO : nitrogen monoxide
4. $\mathrm{Cl}_{2} \mathrm{O}_{7}$ : dichlorine heptoxide
5. $\mathrm{N}_{2} \mathrm{O}_{5}$ : dinitrogen pentoxide

## Explanation:

$\mathrm{Cl}_{2} \mathrm{O}_{7}, \mathrm{~N}_{2} \mathrm{O}_{5}, \mathrm{SO}_{3}$, and NO are all covalent molecules and are named correctly using the appropriate prefixes.
$\mathrm{As}_{4} \mathrm{O}_{6}$ is also a covalent compound; appropriate prefixes are used in the name. It should be correctly named tetraarsenic hexoxide to indicate the presence of six oxygen atoms in each molecule.

## LDE Rank Lattice Energy 004 00310.0 points

Rank the crystal lattice energy of the salts $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{CaCl}_{2}, \mathrm{CaO}, \mathrm{NaF}, \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ from least to greatest:

1. $\mathrm{NaF}<\mathrm{CaO}<\mathrm{CaCl}_{2}<\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}<$ $\mathrm{Al}_{2} \mathrm{O}_{3}$
2. $\mathrm{NaF}<\mathrm{CaCl}_{2}<\mathrm{CaO}<\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}<$ $\mathrm{Al}_{2} \mathrm{O}_{3}$ correct
3. $\mathrm{CaO}<\mathrm{NaF}<\mathrm{CaCl}_{2}<\mathrm{Al}_{2} \mathrm{O}_{3}<$ $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
4. $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}<\mathrm{NaF} \ll \mathrm{CaO} \mathrm{CaCl}_{2}<$ $\mathrm{Al}_{2} \mathrm{O}_{3}$
5. $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}<\mathrm{NaF}<\mathrm{CaCl}_{2}<\mathrm{CaO}<$ $\mathrm{Al}_{2} \mathrm{O}_{3}$

## Explanation:

Sodium fluoride has the least lattice energy because of its small charges, then calcium chloride and calcium oxide with incrementally increasing charges. Both magnesium phosphate and aluminum oxide have identical magnitudes for their charges, but both of
the latter are smaller than than their counterparts in the former and consequently have a greater lattice energy.

## Campion 05 Ex 0107 <br> $004 \quad 10.0$ points

If the interaction energy between a sodium ion and a chloride ion in table salt is $760 \mathrm{~kJ} / \mathrm{mol}$, what is the interaction energy between a zinc ion $\left(\mathrm{Zn}^{2+}\right)$ and a sulfide ion ( $\mathrm{S}^{2-}$ ) in a hypothetical structure in which the inter-ionic distances are the same as that of NaCl ?

## 1. $1.140 \mathrm{~kJ} / \mathrm{mol}$

2. $3040 \mathrm{~kJ} / \mathrm{mol}$ correct
3. $1520 \mathrm{~kJ} / \mathrm{mol}$
4. $1140 \mathrm{~kJ} / \mathrm{mol}$
5. $760 \mathrm{~kJ} / \mathrm{mol}$

## Explanation:

$q_{\mathrm{Zn}}=+2 \mathrm{C}$

$$
q_{\mathrm{S}}=-2 \mathrm{C}
$$

$q_{\mathrm{Na}}=+1 \mathrm{C}$ $q_{\mathrm{Cl}}=-1 \mathrm{C}$
$V_{\mathrm{NaCl}}=760 \mathrm{~kJ} / \mathrm{mol}$
If $r$ is the distance between the two ions (the sum of the ionic radii), the energy interaction between ions is given by Coulomb's Law:

$$
\begin{aligned}
V & =\frac{q_{1} q_{2}}{4 \pi \epsilon_{0} r} \\
r & =\frac{q_{1} q_{2}}{4 \pi \epsilon_{0} V}
\end{aligned}
$$

$$
\begin{aligned}
r_{\mathrm{NaCl}} & =r_{\mathrm{ZnS}} \\
\frac{q_{\mathrm{Na}} q_{\mathrm{Cl}}}{4 \pi \epsilon_{0} V_{\mathrm{NaCl}}} & =\frac{q_{\mathrm{Zn}} q_{S}}{4 \pi \epsilon_{0} V_{\mathrm{ZnS}}} \\
V_{\mathrm{ZnS}} & =\frac{q_{\mathrm{Zn}} q_{\mathrm{S}} V_{\mathrm{NaCl}}}{q_{\mathrm{Na}} q_{\mathrm{Cl}}} \\
& =\frac{(+2 \mathrm{C})(-2 \mathrm{C})(-760 \mathrm{~kJ} / \mathrm{mol})}{(+1 \mathrm{C})(-1 \mathrm{C})} \\
& =-3040 \mathrm{~kJ} / \mathrm{mol},
\end{aligned}
$$

the energy released by the interaction.

## Internuclear Distance 1 $005 \quad 10.0$ points

Consider a potential energy diagram for the interaction of a sodium ion $\left(\mathrm{Na}^{+}\right)$with a chloride ion $\left(\mathrm{Cl}^{-}\right)$. Which of the following statements is/are true?
I) Repulsive forces predominate at very small internuclear distances.
II) The minimum potential energy occurs when attractive forces are greatest.
III) Attractive forces are linearly dependent on the internuclear distance.

1. I and II
2. III only
3. I and III
4. I only correct
5. II and III
6. I, II and III
7. II only

## Explanation:

It is true that repulsive forces predominate at very small internuclear distances; this is the result of the positively charged nuclei electrostatically repelling each other, which occurs despite that fact that sodium ion and chloride ion have opposite charges overall. The attractive forces actually continue to increase as you force the ions closer together, but the repulsive forces increase more, thus offsetting the attractive forces and producing a net increase in potential energy. Thus, the minimum potential energy does not occur at maximum attractive force, but rather at a "sweet spot" where the sum of attractive and repulsive forces is minimized. Attractive forces are a rectangular hyperbola that asymptotically approach zero as the internuclear distance approacues infinity.

## Line Drawing to Formula <br> $006 \quad 10.0$ points

Determine the molecular formula for the molecule:


1. $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Cl}_{2}$
2. $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{Cl}_{2}$
3. $\mathrm{C}_{6} \mathrm{H}_{6}$
4. $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$ correct
5. $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}$
6. $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{Cl}_{2}$

## Explanation:

## LDE Molecular Polarity 004 00710.0 points

Consider the labeled bonds in the molecule below and rank them from least to most polar in terms of difference in electronegativity.


1. $\mathrm{a}<\mathrm{b}<\mathrm{c}<\mathrm{d}<\mathrm{e}$
2. $\mathrm{d}<\mathrm{c}<\mathrm{e}<\mathrm{a}<\mathrm{b}$ correct
3. $\mathrm{e}<\mathrm{b}<\mathrm{d}<\mathrm{c}<\mathrm{a}$
4. $\mathrm{c}<\mathrm{d}<\mathrm{e}<\mathrm{b}<\mathrm{a}$
5. $\mathrm{d}<\mathrm{c}<\mathrm{a}<\mathrm{e}<\mathrm{b}$

## Explanation:

The polarity of a bond is proportional to the difference in electronegativity of the two bonded atoms. The electronegatavity differences of the labeled bonds are $0.5,1.0,0.1,0.0$ and 0.4 , respectively.
00810.0 points

Which of the following is the correct Lewis formula for carbon monoxide (CO)?

1. $\mathrm{O} \equiv \mathrm{C}$ : correct
2. : $\quad \ddot{\mathrm{O}}-\mathrm{C}$ :
3. 


4. $\quad \stackrel{O}{\mathrm{O}}-\ddot{\mathrm{C}}$ :
5. : $\quad \ddot{\mathrm{O}}-\ddot{\mathrm{C}}:$
6. $\mathrm{O}-\mathrm{C}$
7. : $\mathrm{O}-\ddot{\mathrm{C}}$ :
8. $\mathrm{O}-\ddot{\mathrm{C}}$ :
9. $\quad . \quad \mathrm{O}=\stackrel{\square}{\mathrm{C}}$.
10. : $\ddot{\mathrm{O}}-\stackrel{.}{\mathrm{C}}$.

## Explanation:

The Lewis formula for carbon monoxide $(\mathrm{CO})$ is $: \mathrm{O} \equiv \mathrm{C}$ :

## Mlib 031055 <br> $009 \quad 10.0$ points

What kind of carbon-carbon bond is in a molecule of ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ ?

1. ionic
2. single
3. double correct
4. triple

## Explanation:

To draw the dot structure for $\mathrm{C}_{2} \mathrm{H}_{4}$ we must first calculate the number of valence electrons
available from the atoms:

$$
\begin{aligned}
\mathrm{A} & =4 \times 2(\mathrm{C} \text { atom })+1 \times 4(\mathrm{H} \text { atoms }) \\
& =12 e^{-}
\end{aligned}
$$

Hydrogen can form only one bond, so carbon atoms must serve as the central atoms. We place the most symmetrical arrangement possible.

The correct dot structure for the molecule should show a complete octet (8 electrons) around the carbon atoms, two electrons around each hydrogen atom, and a total of 12 valence electrons for the entire structure:


As can be seen above, the carbon-carbon bond is a double bond.
(If using the $S=N-A$ rule to determine the dot structure,
$N=(8 \times 2)+(2 \times 4)=24 e^{-}$and
$S=24-12=12 e^{-}$.
This would indicate 6 bonds and correspond to the structure shown above.)

## Lewis BF3 dash <br> $010 \quad 10.0$ points

Which of the following is the correct Lewis formula for boron trifluoride $\left(\mathrm{BF}_{3}\right)$ ?



4. $\stackrel{\bullet}{\mathrm{F}}=\stackrel{\bullet}{\mathrm{B}} \stackrel{\bullet}{\mathrm{F}}$.
5. $\begin{aligned} \mathrm{F} & -\mathrm{B}-\mathrm{F} \\ & : \mathrm{F}: \\ & \cdot \\ & \end{aligned}$
6.

7. $\begin{aligned} & \mathrm{F}-\underset{\mathrm{B}}{\mathrm{B}}-\stackrel{.}{\mathrm{F}}: \\ &: \mathrm{F} \\ & \mathrm{F}\end{aligned}$

9. $\mathrm{F}-\mathrm{F} \equiv \mathrm{B}-\mathrm{F}$
10. $\begin{aligned} & \mathrm{F}-\stackrel{\ddot{\mathrm{B}}}{\mathrm{\mid}}-\mathrm{F} \\ &: \mathrm{F} \\ & \cdot\end{aligned}$

## Explanation:

The Lewis formula for boron trifluoride
$\left(\mathrm{BF}_{3}\right)$ is


## ChemPrin3e T02 23 <br> $011 \quad 10.0$ points

Draw the Lewis structure of xenon difluoride and give the number of lone pairs of electrons around the central atom.

1. 4
2. 3 correct
3. 1
4. 2
5. 5

## Explanation:

The Lewis structure is


LDE Resonant Species 002
$012 \quad 10.0$ points
Which of the following species exhibit resonance/delocalization?
I) HCN
II) $\mathrm{O}_{3}$
III) $\mathrm{CO}_{3}^{2-}$

1. I, III
2. III only
3. I only
4. II, III correct
5. I, II, III
6. II only
7. I, II

## Explanation:

Both ozone and carbonate have a single pair of resonant electrons and are famous examples of resonant molecules. Cyanide cannot have resonance since hydrogen can only form a single bond.

ChemPrin3e 0246
01310.0 points

Consider the following sets $\mathrm{A}, \mathrm{B}$, and C
$\left.\mathrm{A}_{1}\right)[\ddot{\mathrm{N}}=\mathrm{C}=\ddot{\mathrm{N}}]^{2-}$
$\left.A_{2}\right)[: N \equiv \mathrm{C}-\ddot{\mathrm{N}}:]^{2-}$

of ions.
Determine the formal charge on each atom and identify the structure of lowest energy for each set A, B, and C.

1. $\mathrm{A}_{2}, \mathrm{~B}_{2}, \mathrm{C}_{2}$
2. $\mathrm{A}_{2}, \mathrm{~B}_{3}, \mathrm{C}_{3}$
3. $\mathrm{A}_{1}, \mathrm{~B}_{1}, \mathrm{C}_{1}$
4. $\mathrm{A}_{1}, \mathrm{~B}_{2}, \mathrm{C}_{3}$
5. $\mathrm{A}_{2}, \mathrm{~B}_{3}, \mathrm{C}_{2}$
6. $\mathrm{A}_{1}, \mathrm{~B}_{2}, \mathrm{C}_{1}$ correct

Explanation:
$\mathrm{A}_{1}$ )



$\mathrm{B}_{2}$ )





## ChemPrin3e T03 26 <br> $014 \quad 10.0$ points

Which of the following has bond angles slightly less than $109.5^{\circ}$ ?

1. $\mathrm{I}_{3}^{-}$
2. $\mathrm{O}_{3}$
3. $\mathrm{CH}_{3}^{+}$

## 4. HOCl correct

5. $\mathrm{NO}_{2}^{-}$

## Explanation:

Only HOCl has four regions of electron density around the central atom; the two lone pairs repel the bonds more, making the bond angle less than $109.5^{\circ}$.

## Mlib 032087 $015 \quad 10.0$ points

Which of the following is planar?

1. $\mathrm{NH}_{3}$
2. $\mathrm{SO}_{3}^{2-}$
3. $\mathrm{NO}_{3}^{-}$correct
4. $\mathrm{H}_{3} \mathrm{O}^{+}$
5. $\mathrm{PF}_{3}$

Explanation:
All except the nitrate ion have trigonal pyramidal molecular geometries; the nitrate ion has trigonal planer geometry.

ChemPrin3e T03 16
$016 \quad 10.0$ points
What is the shape (molecular geometry) of $\mathrm{IF}_{4}^{+}$?

1. square planar
2. tetrahedral
3. seesaw correct
4. trigonal bipyramidal
5. T-shaped

Explanation:
There are five regions of electron density (including one lone pair) around the central atom:


ChemPrin3e T03 35
$017 \quad 10.0$ points
Which of the following is polar?

1. $\mathrm{IF}_{5}$ correct
2. $\mathrm{SF}_{6}$
3. $\mathrm{ICl}_{4}^{-}$
4. $\mathrm{XeF}_{4}$
5. $\mathrm{PCl}_{5}$

## Explanation:

$\mathrm{XeF}_{4}$ and $\mathrm{ICl}_{4}^{-}$have 6 RHED with two RHED being lone pairs situated opposite each other so their effects cancel. Only $\mathrm{IF}_{5}$ has an unbalanced number of lone pairs which places one of the polar I-F bonds opposite a lone pair.

This unopposed dipole and the lone pair itself make it polar. The others have either 5 or 6 RHED and no lone pairs on the central atom.

## LDE VB Hybridization 001 <br> $018 \quad 10.0$ points

Which of the following statements concerning hybrid orbitals is/are true?
I) Hybrid orbitals are energetically degenerate.
II) Any element can form $s p^{3} d^{2}$ hybrid orbitals.
III) Hybridizing a $2 s$ and a $2 p$ orbital would produce one single $s p$ hybrid orbital.

## 1. III only

2. II, III

## 3. I only correct

4. II only
5. I, II
6. I, III

## 7. I, II, III

## Explanation:

Statement I is true; hybridization was developed as a theoretical framework to explain the energetic degeneracy of bonds in molecules. Statement II is false; hybridization involving $d$ orbitals requires access to empty $d$ orbitals, and thus begins in period 3. Statement III is false; the number of orbitals used to hybridize is always equal to the number of hybridized orbitals, so using a $2 s$ and a $2 p$ orbital would result in two $s p$ hybrid orbitals.

## LDE VB Sigma Pi Bonds 005 $019 \quad 10.0$ points

How many different types of sigma ( $\sigma$ ) bonds are found in ethanoic acid, $\mathrm{CH}_{3} \mathrm{COOH}$ ? In other words, how many different combinations of atomic orbitals are used when forming the $\sigma$ bonds in ethanoic acid.

## 1. 5

2. 4

## 3. 7

4. 3 correct
5. none of the above

## Explanation:

All of the $\sigma$ bonds found in ethanoic acid are $s p^{3}-1 s, s p^{3}-s p^{2}$, or $s p^{2}-s p^{2}$.

## LDE VB Sigma Pi Bonds 004 $020 \quad 10.0$ points

How many sigma $(\sigma)$ and pi $(\pi)$ bonds are in the Lewis structure for $\mathrm{C}(\mathrm{COOH})_{4}$ ?

1. $8 \sigma, 4 \pi$
2. $12 \sigma, 4 \pi$
3. $16 \sigma, 0 \pi$
4. $12 \sigma, 0 \pi$
5. $16 \sigma, 4 \pi$ correct

## Explanation:

## ChemPrin3e 0376

$021 \quad 10.0$ points
Carbon has a valence of four in nearly all of its compounds and can form chains and rings of C atoms. Consider the propyne structure.


What hybridizations would you expect for the carbon atoms identified by $\mathrm{a}, \mathrm{b}$, and c , respectively?

1. $s p^{3}, s p^{2}, s p^{3}$
2. $s p^{2}, s p^{2}, s p^{3}$
3. $s p^{2}, s p, s p$
4. $s p^{3}, s p, s p^{3}$
5. $s p^{3}, s p, s p$ correct
6. $s p^{3}, s p^{3}, s p^{2}$
7. $s p^{2}, s p, s p^{2}$

## Explanation:



## LDE MO Diagram 001 02210.0 points

Consider the following molecular orbital diagram:


What are the names of the labeled orbitals, $a, b$, and $c$, respectively?

1. $\pi_{2 p}^{*}, \sigma_{2 p}^{*}, \sigma_{2 s}$
2. $\pi_{2 p}^{*}, \sigma_{2 p}, \sigma_{2 s}^{*}$
3. $\sigma_{2 p}^{*}, \pi_{2 p}, \sigma_{1 s}^{*}$
4. $\sigma_{2 p}^{*}, \pi_{2 p}, \sigma_{2 s}$ correct
5. $\sigma_{2 p}^{*}, \pi_{2 p}, \sigma_{2 s}^{*}$

## Explanation:

## LDE Bond Order 009

$023 \quad 10.0$ points
All of the species below have the same bond order except for one of them. Which is it?

1. $\mathrm{Ne}_{2}^{+}$
2. $\mathrm{B}_{2}^{-}$correct
3. $\mathrm{H}_{2}^{-}$
4. $\mathrm{F}_{2}^{-}$
5. $\mathrm{H}_{2}^{+}$

## Explanation:

All of the species have a bond order of 0.5 except for $\mathrm{B}_{2}^{-}$, which has a bond order of 1.5.

```
Msci 090116
\(024 \quad 10.0\) points
```

An antibonding orbital is formed when

1. a $p_{x}$-orbital overlaps a $p_{z}$-orbital.
2. a free electron is present in the molecule.
3. an $s$-orbital overlaps a $p$-orbital.
4. None of these is correct.
5. the overlap of the corresponding atomic orbitals leads to destructive interference. correct

## Explanation:

In-phase overlap of two atomic orbitals results in molecular bonding orbitals; out-ofphase overlap of two atomic orbitals results in molecular antibonding orbitals.

## LDE Paramagnetism 004

$025 \quad 10.0$ points
Which of the following species is/are paramagnetic?
I) $\mathrm{Li}_{2}^{-}$
II) $\mathrm{O}_{2}$
III) $\mathrm{H}_{2}^{+}$

1. II and III
2. I and III

## 3. I, II and III correct

4. II only
5. III only
6. I only
7. I and II

## Explanation:

$\mathrm{Li}_{2}^{-}$and $\mathrm{H}_{2}^{+}$both have an odd number of electrons and therefore must be paramagnetic. $\mathrm{O}_{2}$ has 16 total electrons, the last two of which must go into separate degenerate $\pi^{*}$ anti-bonding orbitals.

