FINAL EXAM

Fall 2014
signature: \qquad
Be sure and write your name on this test copy. Turn in ALL materials (exam, bubblesheet, and scratch paper) when you are finished with the exam. A periodic table and other constants are located on the bubble sheet.

$P V=n R T \quad x_{\mathrm{A}}=P_{\mathrm{A}} / P_{\text {total }}$	$\Delta U=q+w \quad H=U+P V$
$P(V-n b)=n R T$	$w=-P \Delta V \quad w=-\Delta n R T$
$\left(P+a \frac{n^{2}}{V^{2}}\right)(V-n b)=n R T$	$\Delta U=\Delta H-P \Delta V$
$P_{\text {total }}=P_{\mathrm{A}}+P_{\mathrm{B}}+P_{\mathrm{C}}+\cdots$	$\Delta U=\Delta H-\Delta n R T$
	$\Delta U=q_{\mathrm{v}}={ }^{\text {n }} C \Delta T$
$v_{\text {rms }}=\sqrt{ }$	$\Delta H=q_{\mathrm{p}}={ }^{2} C \Delta T$
[Unit 2	$q_{\text {cal }}=q_{\text {water }}+q_{\text {hardware }} \quad q_{\text {sys }}=-q_{\text {cal }}$
	$\Delta S=q_{\mathrm{rev}} / T \quad S=k \ln \Omega$
$\frac{1}{2} m v^{2}=h \nu-\Phi$	$\Delta S=n C \ln \left(\frac{T_{2}}{T_{1}}\right)$
Rydberg : $\nu=\mathcal{R}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)$	$\Delta H_{\mathrm{rxn}}=\Delta H_{1}+\Delta H_{2}+\Delta H_{3}+\cdots$
$\mathcal{R}=2.178 \times 10^{-18} \mathrm{~J}$	$\Delta H_{\mathrm{rxn}}^{\circ}=\sum n \Delta H_{\mathrm{f}}^{\circ}(\mathrm{prod})-\sum n \Delta H_{\mathrm{f}}^{\circ}$ (react)
$\mathcal{R}=1.097 \times 10^{7} \mathrm{~m}^{-1}$	$\Delta H_{\mathrm{rxn}}=\sum B E_{\text {breaking }}-\sum B E_{\text {making }}$
$\mathcal{R}=3.29 \times 10^{15} \mathrm{~s}^{-1}$	$\Delta G_{\mathrm{rxn}}^{\circ}=\sum n \Delta G_{\mathrm{f}}^{\circ}(\mathrm{prod})-\sum n \Delta G_{\mathrm{f}}^{\circ}($ react $)$
_ Unit 3	$\Delta S_{\text {rxn }}^{\circ}=\sum n S^{\circ}($ prod $)-\sum n S^{\circ}($ react $)$
(no formulas for unit 3)	$G=H-T S \quad \Delta G=\Delta H-T \Delta S$
	$\Delta S_{\text {trans }}=\Delta H_{\text {trans }} / T_{\text {trans }}$

