Gas, Liquid or Solid UNIT 3 DAY 7 # Important Information HW9 due Tuesday 9 am. # What are we going to do today? Think about properties of solids. Review properties of liquids in context of IMF. ### Physical Properties #### Properties of Liquids Based on intermolecular forces. #### Properties of Solids Based on intermolecular forces and the type of bonding. #### Question #### Diamonds are - A. a bunch of carbon atoms held together by dispersion forces. - B. a bunch of carbon atoms held together by dipole-dipole interactions. - C. a bunch of carbon atoms covalently bound together. - D. a bunch of C molecules held together by dispersion forces. Types of Solids #### Ionic Solids #### Metallic Solids #### Molecular Solids #### Network Solids # Types of Solids | Class | Examples | Characteristics | |-----------|---|--| | Ionic | NaCl, KNO _{3,}
CuSO ₄ •H ₂ O | Hard, rigid, brittle; high melting/
boiling points; those soluble in water
give conducting solutions | | Network | B, C, black P, BN, SiO ₂ | Hard, rigid, brittle; very high melting points; insoluble in water | | Metallic | s- and d- elements | Malleable, ductile, lustrous; electrically and thermally conducting | | Molecular | BeCl ₂ , S ₈ , P ₄ , I ₂ , ice, glucose | Relatively low melting/boiling points; brittle if pure | # Physical Properties of Solids | Class | Electrons | Conductivity | |-----------|-------------|---| | Ionic | Localized | Not a good conductor (only conducts electricity in aqueous solutions) | | Network | Localized | Not a good conductor | | Metallic | Delocalized | Good conductor | | Molecular | Localized | Not a good conductor | # Predicting Melting Points We can use melting points to distinguish between covalent and molecular solids. | Molecule | Melting Point [K] | Type of Solid | |------------------|-------------------|---------------| | Diamond | 3823 | | | SiO ₂ | 1900 | | | Gold | 1337 | | | NaCl | 1074 | | | Sugar | 423 | | | Naphthalene | 353 | | | Ice | 273 | | | CO ₂ | 190 | | What can you tell me about potassium chlorate? MP = 629 K BP = 673 K What can you tell me about gold, Au? MP = 1337 K BP = 3129 K What can you tell me about ethanol, CH₃CH₂OH? MP = 159 K BP = 351 K What can you tell me about sand, SiO₂? MP = 1900 K BP = 2503 K #### Review Liquid Properties: Vapor Pressure Which of the following has the highest vapor pressure? - A. CH₃OH - B. CH₃CH₂OH - C. CH₃CH₂CH₂OH - D. CH₃CH₂CH₂CH₂OH #### Question In comparing two substances at the same temperature, we find that liquid X has a higher boiling point than liquid Y. Which do you expect to have the higher vapor pressure? **A.** X B. Y ### Evaporation What is the boiling point of water? Will water evaporate at temperatures lower than the BP? Why? # Evaporation Boltzmann distribution explains evaporation #### Question Which distribution is at a higher T? #### Question Which would you predict would have the higher vapor pressure? - A. Water at 25°C - B. Water at 50°C Why? #### Temperature Dependence of Vapor Pressure #### Question Which do you think has the higher vapor pressure? - A. CH₃CH₂OH - B. CH₃OCH₃ - C. They would be the same. Is vapor pressure always less than atmospheric pressure? https://www.youtube.com/watch?v=Ldgp3Ton7R4 # Review Liquid Properties: Viscosity Viscosity races ### Review Liquid Properties: Surface Tension 1. Pennies in Water 2. Pennies in Acetone #### Consider the following molecules: Which would you expect to have: 1. Lowest BP 3. Highest VP 2. Highest BP 4. Highest viscosity # Hydrogen Bonding The number of potential hydrogen bonds is very important.